Чтобы обеспечить плавность переключения передач и обеспечения беспрерывной передачи крутящего момента (для вариатора) используется совсем иной вид сцепления. В автомобилях с вариатором и АКПП в качестве сцепления – элемента, передающего крутящий момент от силовой установки на коробку передач, выступает гидротрансформатор.
Особенность этого элемента, входящего в конструкцию трансмиссии, заключается в том, что передача усилия происходит посредством жидкости, то есть жесткой связи между мотором и КПП нет. Гидротрансформатор позволяет осуществить бесступенчатую передачу усилия, причем с возможностью изменения крутящего момента и скорости вращения.
Также в момент изменения ступени (в АКПП) гидротрансформатор позволяет разъединить между собой мотор и трансмиссию, а после плавно возобновить передачу усилия. По сути устройство выполняет роль сцепления, но с некоторыми дополнительными функциями.
Устройство
Конструкция гидротрансформатора включает в себя всего несколько элементов:
- Насосное колесо;
- Турбинное колесо;
- Статор, он же – реактор;
- Корпус;
- Механизм блокировки;
Монтируется гидротрансформатор на маховике двигателя, но одна из составляющих его имеет жесткую связь с валом коробки передач.
Если провести аналогию этого типа передачи с обычным сцеплением фрикционного типа, то насосное колесо выполняет роль ведущего диска (жестко соединено с коленчатым валом мотора), а турбинное – ведомого (прикрепленного к валу КПП). Вот только физического контакта между этими колесами нет.
Примечательно, что даже расположение этих колес идентично фрикционному сцеплению – турбинное колесо располагается между маховиком и насосным колесом.
Все составные части гидротрансформатора заключены в герметичный корпус, заполненный специальной рабочей жидкостью — маслом ATF. За счет своей формы этот элемент трансмиссии получил народное название «бублик».
Суть работы гидротрансформатора очень проста. На колесах устройства имеются лопасти, которые перенаправляют жидкость в определенном направлении.
Вращаясь вместе с маховиком, насосное колесо создает поток жидкости и направляет его на лопасти турбины, тем самым и обеспечивается передача усилия.
Если бы конструкция включала только эти два колеса, то гидротрансформатор не отличался бы от гидромуфты, у которой вращающий момент на обеих составляющих практически одинаков.
Но в задачу гидротрансформатора входит не только передача усилия, а и его изменение.
Так, при старте необходимо обеспечить увеличение крутящего момента на ведомом колесе (при начале движения), а во время равномерного движения – исключить так называемое «проскальзывание».
Для выполнения этих функций в конструкции предусмотрены реактор и механизм блокировки.
Реактор представляет собой еще одно лопастное колесо, но значительно меньшего диаметра и располагается оно между турбиной и насосом, с последним реактор связан посредством обгонной муфты.
В задачу этого элемента входит увеличение скорости потока жидкости, что и приводит к повышению крутящего момента.
Работает реактор так: при возникновении большой разницы между основными колесами гидротрансформатора, обгонная муфта блокирует реактор, не давая ему вращаться (из-за этого еще одно название составляющей – статор).
При этом его лопасти, имеющие специальную форму, увеличивают скорость движения потока жидкости, попадающего на него после прохождения турбинного колеса, и направляют его снова на насос.
Таким образом реактор значительно повышает крутящий момент, необходимый для создания достаточного усилия при начале движения.
При равномерном движении гидротрансформатор блокируются, то есть в нем появляется жесткая связь, и делает это используемый в конструкции механизм блокировки.
Ранее в АКПП эта составляющая срабатывала только на повышенных скоростях движения. Сейчас же, используемые электронные системы управления коробкой блокируют гидротрансформатор практически на всех ступенях.
То есть, как только крутящий момент для определенной передачи подходит к требуемым параметрам, механизм срабатывает.
При смене ступени он отключается, чтобы обеспечить плавность переключения и снова включается. Тем самым исключается вероятность «проскальзывания» гидротрансформатора, что повышает его ресурс, снижает потери усилия и уменьшает потребление топлива.
Примечательно, что механизм блокировки, по сути, представляет собой фрикционное сцепление, и работает он по тому же принципу. То есть в конструкции имеется фрикционный диск, который закреплен на турбине.
В отключенном состоянии блокировочного механизма этот диск находится в отжатом состоянии. При включении же блокировки, фрикционы прижимаются к корпусу гидротрансформатора, тем самым и достигается жесткая передача крутящего момента от мотора на КПП.
В целом, если рассмотреть функционирование гидротрансформатора, то существует три режима его работы:
- Трансформация (включается, когда требуется повышение крутящего момента для создания большего усилия. В этом режиме работает реактор, обеспечивая повышение скорости движения потока);
- Гидромуфта (в этом режиме реактор не задействован и вращающий момент на ведущем и ведомом колесе практически одинаков);
- Блокировка (турбина жестко связана с корпусом для уменьшения потерь на «проскальзывание»).
Используемая для управления работой гидротрансформатора электронная система обеспечивает очень быструю смену режима его работы, подстраивая функционирование этого элемента под возникающие условия.
Оставить комментарий: