Принцип работы частотного преобразователя

Что такое частотный преобразователь, основные виды и какой принцип работы

Что такое частотный преобразователь, основные виды и какой принцип работы - фотография 1 - изображение 1

В различных ситуациях может возникнуть необходимость преобразования частоты исходного тока в ток с напряжением регулируемой частоты. Это требуется, например, при работе асинхронных двигателей для изменения их скорости вращения. В этой статье будет рассмотрены назначение и принцип работы частотного преобразователя.

Что такое частотный преобразователь - фото 2 - изображение 2

Что такое частотный преобразователь

Частотный преобразователь (ПЧ) – это электротехническое устройство, которое преобразовывает и плавно регулирует однофазный или трехфазный переменный ток с частотой 50 Гц в аналогичный по типу ток с частотой от 1 до 800 Гц. Такие устройства широко применяются для управления работой различных электрических машин асинхронного типа, например, для изменения частоты их вращения. Также существуют аппараты для использования в промышленных высоковольтных сетях.

Простые преобразователи регулируют частоту и напряжение в соответствии с характеристикой V/f, сложные приборы используют векторное управление.

Частотный преобразователь является технически сложным устройством и состоит не только из преобразователя частоты, но и имеет защиту от перегрузок по току, от перенапряжения и короткого замыкания. Также такое оборудование может иметь дроссель для улучшения формы сигнала и фильтры для уменьшения различных электромагнитных помех. Различают электронные преобразователи, а также электромашинные устройства.

Принцип работы частотного преобразователя

Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.

Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.

Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.

Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.

Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.

Принцип работы частотного преобразователя - фотография 3 - изображение 3

Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:

  1. Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
  2. При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
  3. Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
  4. На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Виды преобразователей частоты - изображение 4 - изображение 4

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

Для чего может быть нужен электродвигателю частотный преобразователь - изображение 5 - изображение 5

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:
  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Преобразователь частоты для асинхронных двигателей - схема системы, выбор и цена - фото 6 - изображение 6

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Для чего может быть нужен электродвигателю частотный преобразователь

Применение частотных преобразователей позволяет снизить затраты на электроэнергию, расходы на амортизацию двигателей и оборудования. Их возможно использовать для дешевых двигателей с короткозамкнутым ротором, что снижает издержки производства.

Многие электродвигатели работают в условиях частой смены режимов работы (частые пуски и остановки, изменяющуюся нагрузку). Частотные преобразователи позволяют плавно запускать электродвигатель и снижают максимальный пусковой момент и нагрев оборудования. Это важно, например, в грузоподъемных машинах и позволяет снизить негативное влияние резких пусков, а также исключить раскачивание груза и рывки при остановке.

При помощи ПЧ можно плавно регулировать работу нагнетательных вентиляторов, насосов и позволяет автоматизировать технологические процессы (применяются в котельных, на горнодобывающих производствах, в нефтедобывающей и нефтеперерабатывающей сферах, на водопроводных станциях и других предприятиях).

Использование частотных преобразователей в транспортерах, конвейерах, лифтах позволяет увеличить срок службы их узлов, так как снижает рывки, удары и другие негативные факторы при пусках и остановке оборудования. Они могут плавно увеличивать и уменьшать частоту вращения двигателя, осуществлять реверсивное движение, что важно для большого количества высокоточного промышленного оборудования.

Преимущества частотных преобразователей:

  1. Снижение затрат на электроэнергию: за счет снижения пусковых токов и регулирования мощности двигателя исходя из нагрузки;
  2. Увеличение надежности и долговечности оборудования: позволяет продлить срок эксплуатации и увеличить срок от одного технического облуживания до другого;
  3. Позволяет внедрить внешний контроль и управление оборудованием с удаленных компьютерных устройств и способность встраивания в системы автоматизации;
  4. Частотные преобразователи могут работать с любой мощностью нагрузки (от одного киловатта до десятков мегаватт);
  5. Наличие специальных компонентов в составе частотных преобразователей позволяет защитить от перегрузок, обрыва фазы и короткого замыкания, а также обеспечить безопасную работу и отключение оборудования при возникновении аварийной ситуации.

Конечно, глядя на такой список достоинств можно задаться вопросом, почему бы их не использовать для всех двигателей на предприятии? Ответ тут очевиден, увы, но это высокая стоимость частотников, их монтаж и наладка. Не каждое предприятие может позволить себе эти расходы.

Преобразователь частоты для асинхронных двигателей - схема системы, выбор и цена

Устройство и принцип работы - фото 7 - изображение 7

Двигатель асинхронного типа используется повсеместно. Основное предназначение – преобразование электричества в механическую силу. Электродвигатель – своего рода противоположность генератора.

Технические характеристики - изображение 8 - изображение 8

Учитывая особенность того, что рассматриваемый механизм работает от электричества, особые требования предъявляются к показателям электроэнергии. Часто можно встретить ситуацию, когда в цепи присутствует частотный преобразователь, который создан специально для асинхронного типа двигателя.

В системе питания, созданной для асинхронного двигателя, рассматриваемый аппарат служит для изменения тока с 1 или 3 фазами, который приходит от сети питания и имеет частоту 50 Гц, в трехфазный ток, показатель частоты от различных условий может быть от 1 до 800 Гц.

Кроме вышеприведенной информации, стоит уточнить следующее:

  1. Для оборудования, которое используется в промышленности, проводят выпуск частотного преобразователя, имеющий электроиндукционный тип. Они представляют собой в некотором роде асинхронный двигатель, который имеет фазный ротор. Определенный режим позволяет работать оборудованию в режиме генератора-преобразователя.
  2. Изменение частоты входного тока используются для изменения скорости вращения выходного вала двигателя. Совершенные механизмы регулирования представлены векторным типом, практически только подобные варианты исполнения присутствуют в продаже.

Приобрести также можно варианты исполнения для бытового использования.

Устройство и принцип работы

Подключение преобразователя частот – пошаговая инструкция - фотография 9 - изображение 9

Рассматриваемое устройство состоит из следующих элементов:

  1. Мост постоянного тока выступает в качестве выпрямителя. Именно он проводит преобразование, к примеру, промышленного тока с генератора в постоянный.
  2. Инвертор проводит создание переменного тока. При этом, есть возможность контролировать частоту и амплитуду.
  3. Также, в конструкции есть тиристоры или транзисторы, которые обеспечивают подачу рабочего тока к электродвигателю. Они выступают в качестве электрических ключей.
  4. В управляющей части установлен микропроцессор, который проводит управление работой установленных ключей. Также, микропроцессор выполняет ряд других задач: проводит защиту системы, контролирует выходные параметры, диагностирует состояние подаваемого тока.

Многие построены на основе двойного преобразования.

Можно выделить 2 основных класса:

  1. С созданием промежуточного звена.
  2. С образованием непосредственной связи.

2 вышеприведенных класса имеют свои особенности, которые определяют возможность и целесообразность их использования тех или в иных условиях.

Непосредственная связь обуславливается тем, что преобразователь представлен выпрямителем управляемого типа. Используемая система управления проводит отпирание группы тиристоров и также проводит подвод напряжения к обмотке электродвигателя.

В данном случае, напряжение преобразуется путем вырезания синусоид из входного тока. Проведенные измерения показывают, что получаемая частота находится в приблизительном промежутке от 0 до 30 Гц. Использовать подобный вариант исполнения нельзя в регулируемых приводах.

Для того, чтобы использовать незапираемые тиристоры, нужно организовывать сложные системы управления, которые значительно повышают стоимость создаваемой цепи.

Выбор частотного преобразователя - фото 10 - изображение 10

При выходе синусоида с непосредственной связью, приводит к следующему:

  1. Появляется гармоник.
  2. Происходят потери в самом электродвигателе.
  3. Происходит перегрев электродвигателя.
  4. Значительно снижается показатель момента.
  5. Создаются сильные помехи.

Кроме этого, компенсаторы значительно повышают стоимость цепи, ее габариты и вес. Включение дополнительного элемента в цепь также приводит к уменьшению показателя КПД из-за возникающих потерь.

Современные цепи питания часто создаются при использовании преобразователя, который имеет промежуточное звено.

В данном случае, проводится процедура, предусматривающая двойное преобразование электрического тока:

  1. Изначально, входное напряжение синусоидального типа с неизменной частотой и амплитудой преобразуется при помощи выпрямителя.
  2. Используются специальные фильтры, которые сглаживают показатели.
  3. Инвертор на выходе проводит преобразование энергии с изменяемым показателем амплитуды и частоты.

Как правило, процедура двойного преобразования приводит к значительному снижению показателя КПД, вследствие чего также ухудшаются показатели соотношения массы и габаритов.

К основным достоинствам преобразователей частоты, которые работают как тиристор, можно отнести следующее:

  1. Возможна работа в системе с большими показателями тока.
  2. Система может быть использована при высоких показателях напряжения.
  3. Есть устойчивость к длительному воздействию большой нагрузки и импульсного воздействия.
  4. Более высокий показатель КПД, который достигает 98%.

Данные особенности являются основными отличительными признаками работы двух типов преобразователей.

Технические характеристики

Обзоры моделей - изображение 11 - изображение 11

Использовать частотные преобразователи следует только с учетом эксплуатационных характеристик. К основным техническим характеристикам, на которые нужно обратить внимание, можно отнести:

  1. Диапазон напряжения подаваемого тока. Существуют различные варианты исполнения, которые могут работать при напряжении от 100 до 120 В, от 200 до 240 В. Этот показатель является определяющим при выборе наиболее подходящей модели.
  2. Номинальная мощность подключаемого в цепи электродвигателя. Как правило, показатель измеряется в кВт.
  3. Полная мощность электродвигателя.
  4. Номинальный выходной ток.
  5. Выходное напряжение зачастую не больше показателя напряжения от источника питания, но может быть и меньше.
  6. Диапазон выходной частоты.
  7. Показатель допустимой силы тока на входе.
  8. Частота электричества при входе.
  9. Максимальные отклонения от показателей, которые допустимы при тех или иных случаях.

Подобные параметры должны быть указаны в спецификации преобразователя частот. Если, к примеру, не учесть напряжение подаваемого тока, рассматриваемое устройство будет испорчено.

Подключение преобразователя частот – пошаговая инструкция

Преобразователь частоты для электродвигателя: назначение, свойства, схемы подключения - изображение 12 - изображение 12

Провести подключение преобразователя частоты можно различными схемами. Все зависит от того, с какой целью рассматриваемый элемент включается в сеть, к примеру, для более легкого старта или регулировки частоты вращения.

Довольно простой схемой подключения частотника можно назвать размещение устройства автоматического выключения перед ним. Подобное устройство должно быть адоптировано для работы с током, величина его должна составлять величину номинального показателя потребляемого тока электродвигателя.

Стоит отметить, что многие модели частотников могут работать с трехфазной сетью, поэтому можно выбрать обычный трехфазный автомат. На момент возникновения короткого замыкания, одна из фаз проводит обесточивание других. Если же преобразователь частоты рассчитан на однофазную сеть, стоит выбрать выключатель, который рассчитан на утроенный ток одной фазы.

Частотники рассчитаны исключительно на прямое включение в сеть.

Дальнейшая работа по подключению заключается в присоединении фазных проводов к определенным клеммам электродвигателя. Также, проводится включение внешнего тормозного резистора в цепь. Кроме этого, в сеть можно включить вольтметр для измерения напряжения в цепи на выходе после преобразователя.

Как правило, современные варианты исполнения частотников имеют подробную инструкцию того, каким образом они должны быть включены в сеть. Подобную информацию стоит учитывать при создании цепи подключения электродвигателя к источнику питания.

Выбор частотного преобразователя

Частотный преобразователь для электродвигателя: назначение и функции - фото 13 - изображение 13

Изначальной задачей каждого производителя можно назвать продать свою продукцию. Именно поэтому, следует обратить внимание на нижеприведенные нюансы правильного выбора:

  1. Скалярный или векторный метод управления. Современные варианты исполнения зачастую имеют векторные методы управления, однако особый режим работы позволяет переключиться на скалярный метод управления. Найти новый частотник без векторного метода управления практически невозможно.
  2. Мощностной ряд. Стоит помнить о том, что мощность потребителя энергии – важный показатель, на который стоит обращать внимание.
  3. Входное напряжение, а точнее допустимый диапазон, определяет то, при каком напряжении преобразователь частоты может работать без сбоев. При этом, важно понять, что падение показателя приведет к остановке частотника, увеличение – к выходу из строя всего оборудования. Поэтому следует обеспечить работу при постоянном показателе входного напряжения.
  4. Диапазон регулировки – также важный показатель, особенно при использовании двигателей, которые работают при высоких показателях номинальной частоты.
  5. Как организовано управление. Современные варианты исполнения имеют специальные пульты, при помощи которых можно вводить необходимые значения.
  6. Срок гарантии косвенно говорит о надежности техники. Однако, стоит помнить о том, что выход из строя при подаче тока с неправильными номинальными показателями нельзя назвать гарантийным случаем.

Вышеприведенные особенности следует учитывать при выборе преобразователя частоты.

Обзоры моделей

Выделим следующие модели рассматриваемого оборудования:

Omron MX2

Принцип работы - фотография 14 - изображение 14

Стоимость этой модели составляет 15 000 рублей. Значение мощности 0,75 кВт, выходного тока 2,1 А. Вес подобного блока составляет 1,5 кг. Блок компактный и прост в использовании. Данный вариант исполнения имеет встроенный блок управления.

Vacon NXL

Устройство частотного преобразователя - фото 15 - изображение 15

Стоимость около 24 000 рублей. Значение мощности 1,1 кВт, выходного тока 3,3. Вес блока составляет 5 кг. Довольно дорогая модель, несмотря на небольшое повышение выходных показателей.

ESQ 2000

Применение - фото 16 - изображение 16

Мощный блок, который может работать при 90 кВт. Стоимость около 250 000 рублей. Выходной ток 176 А. Установка имеет вес 50 кг. Рассматриваемая установка одна из самых дорогих. Имеет довольно большие габаритные размеры, несколько напоминает шкаф.

Существует огромное количество моделей, их стоимость зачастую зависит от эксплуатационных характеристик.

Преобразователь частоты для электродвигателя: назначение, свойства, схемы подключения

Классификация и виды - фотография 17 - изображение 17

Электродвигатели — составляющая часть бытовой и строительной техники, производственного оборудования. Небольшой мощности моторы стоят в кулерах, обеспечивающих охлаждение компьютерной техники и электронных устройств. Но далеко не все хорошие и дешевые двигатели могут работать с разной скоростью, а это ограничивает область их применения. Частотный преобразователь для электродвигателя как раз и предназначен для того, чтобы обойти эту сложность. Этот прибор изменяет частоту электрического тока, что позволяет решить многие проблемы.

Частотный преобразователь для электродвигателя: назначение и функции

Инверторный преобразователь частоты — электронное устройство для изменения частоты электрического тока и напряжения. Пределы изменений солидные. Частота может меняться от 1 Гц до 500 Гц. И это не максимум, а предел регулировки нормального частотника. Современные частотные инверторы делают на основе электроники, что позволяет точно поддерживать частоту и напряжение. При желании можно создать условия для плавного старта. Все это позволяет применять относительно недорогие электромоторы постоянного тока там, где раньше это было невозможно.

Выбор по мощности - изображение 18 - изображение 18

Некоторые частотные преобразователи управляются микропроцессорами

Частотный инвертор с асинхронным электромотором

Асинхронные двигатели при включении потребляют в разы больше энергии чем при штатной работе. Пусковые токи могут быть в 6-8 раз выше рабочих. Такие мгновенные скачки просаживают сеть. Напряжение резко падает, потом также скачкообразно восстанавливается. При включении особо мощного движка, сетевые параметры изменяются настолько сильно, что воспринимаются чувствительной техникой как пропадание. В результате перезапускается компьютерная техника, моргают или совсем гаснут лампы, перегорают блоки питания у котлов отопления и т.д.

Раньше остроту проблемы снижали установкой конденсаторов, которые сглаживали скачки. Но конденсаторы требуются большой емкости — по 70 мкФ на каждый киловатт мощности, плюс такую же емкость необходимо подключать для нейтрализации пускового тока. Но даже в этом случае скачки были, как и перегрузки двигателя на старте. К тому же подключение через емкость «съедало» значительную часть мощности мотора. Для компенсации потери необходимо было покупать более мощные агрегаты, ставить более мощные пусковые конденсаторы. В общем, решение не лучшее, но другого по сути, не было.

Дополнительные функции и параметры - фото 19 - изображение 19

Преобразователи частоты выбирают по мощности подключаемого оборудования (должен быть запас не менее 20%) и по току (тоже с запасом)

С появлением преобразователей частоты (ПЧ) проблема решается намного эффективнее. Основная функция этого оборудования — плавный и постепенный разгон двигателя с нуля до полной мощности. На протяжении определенного промежутка времени (может задаваться, а может быть фиксированной величиной), подаваемый на двигатель ток плавно изменяет свои параметры, выводя движок на рабочий режим. Никаких перегрузок, влияния на сети. И конденсаторы не нужны, значит мощность двигателя может быть примерно на 40% меньше чем раньше (именно настолько она снижалась с конденсаторами). Точно так же, постепенно, происходит отключение. Электромотор постепенно замедляется, затем останавливается. В общем, частотный преобразователь для электродвигателя продлевает срок его эксплуатации, убирает проблему пусковых токов, стабилизирует параметры сети.

Что дает применение частотного инвертора с синхронным двигателем

Синхронные электродвигатели постоянного тока имеют несложное устройство, после выхода на требуемую скорость работают стабильно. Недостатки — сложности с пуском и невозможность регулирования частоты вращения вала. Проблему пуска давно научились обходить — делают асинхронную пусковую обмотку, которой разгоняют до нужной частоты. А вот невозможность менять скорость очень сильно ограничивает область применения. Не так много устройств, в которых нет необходимости в разных скоростных режимах работы двигателя. Это вентсистемы, кулеры.

Особенности эксплуатации двигателей с частотными преобразователями - фотография 20 - изображение 20

Таблица с несколькими моделями, их параметрами и ценами

Если с синхронным электродвигателем использовать частотный преобразователь, проблема изменения скоростей решается на раз. Причем эта связка  работает настолько удачно, что японцы уже выпустили новые электропоезда на такой тяге. Стало появляться и другое подобное оборудование. Причем не только тяговое — новые электроинструменты некоторые производители стали выпускать с такими моторами. Да, стоит такое оборудование дороже, но имеет хороший КПД, работает стабильно.

Принцип работы

Частотный преобразователь — это устройство, которое плавно изменяет частоту исходного напряжения. Есть устройства, работающие как от однофазной (220 В), так и от трехфазной сети (380 В). Предел изменения частоты — от 0,1 Гц до 500 Гц. Существуют преобразователи двух типов — индукционного и электронного. Индукционные имеют невысокий КПД, так что используются реже. Практически все современные частотные преобразователи — электроника с системой управления и контроля.

Как работает преобразователь частоты с электродвигателем? Известно, что вал асинхронного электрического двигателя с короткозамкнутым ротором вращается со скоростью, которая зависит от частоты питающего напряжения. Частота вращения ротора определяется по следующей формуле:

n = 60 * f / p

где n — частота вращения ротора; f — частота питающего напряжения, p — число пар полюсов статора. Как видите, зависимость прямая. Чем выше частота питающего напряжения, тем быстрее вращается ротор, чем меньше частота, тем медленнее вращение. Вот на этой зависимости и построено управление асинхронным двигателем при помощи преобразователя частоты, его плавный старт и останов. Осталось разобраться как частотный регулятор это делает.

Устройство частотного преобразователя

Работает частотный преобразователь для электродвигателя следующим образом:

  1. Сетевое напряжение подается на выпрямитель, где преобразуется в постоянное.
  2. На блоке инвертора из постоянного напряжения формируются полярные импульсы (положительные и отрицательные) требуемой частоты. Импульсы формируются по принципу широтно-импульсной модуляции (ШИМ).
  3. Импульсы преобразуются в синусоиду той же частоты.

Как видите, устройство не слишком сложное, но это базовый набор блоков. В более сложные модели встраиваются дополнительные, обеспечивающие контроль параметров и защиту.

Подключение к электродвигателю - фото 21 - изображение 21

Блок-схема частотного преобразователя

Основной узел частотного преобразователя для электродвигателей — инвертор. Его собирают не основе IGBT транзисторов. Включая и выключая их, из постоянного напряжения формируем импульсы. Задавая частоту включения и выключения, на выходе получаем импульс с заданной частотой.

Если изменять скважность импульсов — отношение длительности периода к длительности импульса — меняется площадь импульса, а значит, и напряжение на выходе. Вот и получаем возможность используя частотный преобразователь для электродвигателя менять не только частоту, но и напряжение.

Последний блок — сглаживающий импульсы и превращающий их в синусоиду — присутствует далеко не всегда. Частота импульсов на выходе инверторного блока может достигать нескольких килогерц. А обмотки двигателя имеют высокую индуктивность, и сами работают как выходной фильтр.

Применение

Основные плюсы применения частотного преобразователя для электродвигателя — снижение влияния старта и торможения, возможность плавного регулирования скорости. Это дает возможность управлять работой двигателя без останова. Кроме этого, можно управлять группой двигателей, подключать движок на 220 В к сети 380 В и наоборот. Все это можно делать с асинхронными двигателями:

  • Вентиляторы, швейные машины.
  • Насосы, дымососы, компрессоры.
  • Центрифуги.
  • Крупная строительная техника (бетономешалки, манипуляторы и т.д.).
  • Токарные или фрезерные станки.

Любой электрический двигатель при подключении через частотный преобразователь работает стабильно. Ведь большая часть устройств позволяет подобрать нужный режим питания для обеспечения нормальной работы.

Первый пуск и настройка - фотография 22 - изображение 22

Выпускают разной мощности — от нескольких ватт до десятков киловатт

Преобразователь частоты может работать и с синхронными двигателями. Но выбирать его надо ориентируясь на потребляемый ток. Как правило, мощность ПЧ получается завышенной, но с этим ничего не поделаешь. Иначе работать двигатель не будет. И стоит иметь в виду, что синхронный двигатель при работе на повышенных частотах (выше 50 Гц) будет сильно шуметь, быстрее изнашиваться.

Классификация и виды

Все частотные преобразователи для электромоторов условно можно разделить на несколько групп:

  • Индивидуальные. Разработаны под какой-то определенный тип и характеристики мотора.
  • Универсальные. Благодаря возможности изменять параметры могут работать с различными двигателями.
  • Специализированные. Разрабатываются для конкретных типов оборудования. Например, преобразователи для насосных станций (насосов) и вентиляторов (Mitsubishi FR-F740).
  • Интеллектуальные. Имеют встроенный персональный компьютер, имеют функции самодиагностики. ПЧ сам следит за состоянием изнашиваемых частей и сообщает о необходимости из замены, когда ресурс подходит к концу.

Самые дешевые — индивидуальные. Но они могут работать только исключительно с моторами одного типа/мощности. Специализированные тоже имеют довольно ограниченный диапазон подключаемого оборудования. Универсальные, с этой точки зрения, хороши, но стоит они значительно дороже (сложнее схема и больше компонентов).

Частотные преобразователи своими руками. Схема и принцип работы частотного преобразователя - фото 23 - изображение 23

Выбирать надо под конкретное устройство

Но, все-таки, самые дорогие — интеллектуальные. Многие из них управляться могут при помощи сенсорной панели, а не набора регуляторов. Кроме того, большинство моделей имеет пульт дистанционного управления. Это удобно, так как частотный регулятор может быть установлен далеко. Обычно их ставят в шкафах или где-то на вводе. При наличии пульта ДУ можно регулировать работу, находясь возле двигателя и не бегая к шкафу.

Выбор по мощности

Главный критерий выбора частотного преобразователя для электродвигателя — мощность. Частотник не должен быть менее мощным чем управляемый им двигатель. Мощнее быть может, слабее — нет. Но все не так просто, так как конкретное соотношение мощностей зависит от типа оборудования, к которому будет подключаться преобразователь. Частотный преобразователь для электродвигателя с двумя парами полюсов, должен иметь мощность:

  • равную двигателю, если движок работает постоянно (транспортеры);
  • не ниже 150% от мощности, если движок работает с перегрузкой;
  • не менее 120% от мощности движка для центробежных насосов и вентиляторов;
  • для управления моторами подъемной техники, может понадобиться двукратное превышение мощности.

При выборе стоит обратить внимание на описание ПЧ, так как производители часто нормируют нагрузки на постоянный и переменный момент. В некоторых есть отдельные линейки под работу с постоянным и переменным моментом. Например, частотные преобразователи Delta (Дельта).

Общая информация - изображение 24 - изображение 24

Мощность и потребляемый ток — два основных критерия выбора

Кроме этого, необходимо отслеживать такие параметры:

  • Номинальный длительный ток преобразователя частоты должен быть не меньше рабочего потребления тока управляемого оборудования.
  • Если подключаться будет несколько двигателей, ток ПЧ должен быть не менее чем на 25% больше суммарно потребляемого подключенными устройствами.

Если надо обеспечить быстрый разгон устройств, лучше выбрать более мощный преобразователь — он быстрее справляется с задачей.

Дополнительные функции и параметры

Современный частотный преобразователь для электродвигателя — сложное устройство. Если он выполнен на базе процессора, то функций имеет немало. Даже недорогие модели могут обладать широкой функциональностью. Для оправданного выбора стоит знать, что означает каждый из параметров и для чего нужна та или иная функция.

  • Выходная частота или диапазон ее изменения. Тут все понятно. Этим параметром описываются возможности изменения частоты на выходе.
  • Пределы регулирования напряжения. Вопросов тоже не возникает.
  • Тип преобразования частоты. Может быть векторным и скалярным. Скалярный используется в более простых моделях. Параметры отслеживаются по соотношению напряжения и частоты. Векторный тип преобразования частоты в ЧМ подстраивает работу так, чтобы по отношению к нагрузке, момент вращения был постоянным. Такой способ управления более сложный и надежный, используется в более дорогих моделях.
  • Наличие ПИД-регулятора. Удерживает давление, температуру и скорость в заданных пределах (выставляются при помощи ручки или программируются). Для связи с другими средствами управления должен иметь сигнальные выводы (аналоговые и/или цифровые).
  • Юстировка скорости. Помогает при смене или скачках питания стабилизировать работу двигателя.

    Что такое частотный преобразователь - фото 25 - изображение 25

    Перечень характеристик преобразователя частоты SV015IG5A-4
  • Вид торможения. Обычно рекомендуют останавливать мотор на свободном выбеге — отключить питание и ждать пока остановится. Может применяться плавное торможение — постепенное снижение напряжения. Механическое торможение — когда скорость вращения вала тормозится за счет силы трения. Быстрее всего останавливается ротор при динамическом торможении. В этом случае на одну из фаз подается постоянное напряжение. Оно взаимодействует с ротором, останавливая его за короткий промежуток времени.
  • Количество выходов с различными частотами. Такой частотный преобразователь для электромотора может обслуживать сразу несколько двигателей с различной (фиксированной) скоростью вращения.

Кроме параметров и дополнительных возможностей, на работу влияет качество сборки. Естественно, лучше брать оборудование известных производителей. Хорошо себя зарекомендовали ABB, Siemens, Mitsubishi, Omron. Но их частотники дешевыми назвать нельзя. Если нужно сэкономить и внешний вид не так важен, обратите внимание на отечественных и белорусских производителей. Внешнее оформление, как водится, желает быть лучше, а характеристики и стабильность работы неплохие.

Особенности эксплуатации двигателей с частотными преобразователями

Как уже сказано выше, используя частотный преобразователь для электродвигателя, снижаем потери мощности за счет снижения реактивной составляющей тока. Кроме того, есть некоторые моменты, которые необходимо знать:

  • При работе на сниженных оборотах возможен перегрев двигателя. Это происходит за счет снижения скорости естественного обдува. Особенно заметен перегрев на скоростях, близких к номинальным. Для снижения температуры в таком случае желательно использовать дополнительный обдув.
  • При работе стандартного электромотора (на 50 Гц) на повышенных скоростях вращения, стоит учитывать состояние подшипников. Из-за возникающей более сильной вибрации они быстрее выходят из строя. Для нивелирования этого явления можно использовать виброгасящие подкладки. Кроме того, частоту надо выбирать так, чтобы не возникало резонанса. И учтите: на повышенных скоростях шуметь вентилятор электромотора будет больше.

    Материалы для сборки - фотография 26 - изображение 26

    Надо учитывать особенности работы
  • При снижении частоты вращения вала, для нормальной работы необходимо пропорционально снижать нагрузку. Асинхронный двигатель обеспечивает максимальный крутящий момент только на номинальной частоте вращения. Поэтому с уменьшением частоты, он падает.
  • Для длительной работы на сниженных оборотах используют электродвигатели со сниженной номинальной частотой — от 750 об/мин до 1500 об/мин. Второй вариант — двигатели с завышенной мощностью.
  • Если частотный преобразователь выбираете для погружного насоса, необходимо выбор делать не только по мощности, но и по току. У двигателей для этой категории насосов номинальный ток значительно выше. При большой длине кабеля от ПЧ до насоса, напряжение может значительно понижаться, что ведет к снижению скорости вращения вала электродвигателя. Чтобы падение было менее значительным, используют кабель с завышенным сечением проводников.

Частотный преобразователь для электродвигателя расширяет возможности его использования. Это важно, но не менее важно правильно его подобрать, учитывая все особенности работы. Это гарантирует длительную эксплуатацию обоих устройств.

Подключение к электродвигателю

Для обеспечения безопасной работы, перед частотным преобразователем желательно ставить автомат защиты. Причем на трехфазную сеть нужен трехфазный автомат, а не три отдельных однофазных. Это позволит быстро отключить сразу все фазы как при перегрузке проводки, так и при перекосе на одной из фаз. Номинал автоматов выбирают по току нагрузки.

Подключение нулевого и заземляющего проводников обязательно. Тянут их от соответствующих шин напрямую — при помощи провода требуемого сечения. Для защиты человека и контроля за состоянием изоляции, в схему желательно добавить еще УЗО (устройство защитного отключения). Его включают перед автоматом. При возникновении тока утечки, УЗО одновременно разорвет фазы и ноль, полностью обесточив схему.

Сборка устройства - фото 27 - изображение 27

Схема разрабатывается в зависимости от назначения устройства с которым работает электродвигатель

При покупке дешевых моделей преобразователей, для пуска и останова может понадобиться установка специального реле, фиксирующего контакты в нужном положении. В этом случае с выхода автомата провода подаются на реле, а с его выхода идут на частотный преобразователь. Само подключение двигателей к ПЧ происходит напрямую.

Подключение - фото 28 - изображение 28

Схема подключения частотного преобразователя для двух электродвигателей

Как известно, асинхронные двигатели могут работать как с однофазным, так и с трехфазным напряжением. Перед подключением движка к преобразователю частоты, надо проверить как подключены обмотки. Они должны быть:

  • «звездой» — если напряжение на выходе ПЧ трехфазное;
  • «треугольником» — если преобразователь выдает однофазное питание.

Обслуживание устройства - изображение 29 - изображение 29

Частотный преобразователь для электродвигателя: подключение напрямую возможно не для всех двигателей

Частотный преобразователь для электродвигателя подключается при помощи кабелей (не проводов), сечение и параметры которых соответствуют параметрам устройства. Эти данные, как и рекомендации по подключению, должны быть в паспорте прибора. Так что внимательно проштудируйте мануал. Это может спасти от многих неприятностей. Все-таки могут быть особенности.

Первый пуск и настройка

Перед первым включением собранной схемы, на преобразователе частоты выставляется минимально возможная скорость вращения вала. После этого включаем автомат, подаем питание на инверторный преобразователь частоты. На нем должны загореться светодиоды. В моделях с дисплеем, на экране отобразятся стартовые показатели прибора. Далее действия такие:

  • Кратковременно нажимаем кнопку «пуск» на частотнике.
  • Вал начинает медленно вращаться. Если он движется не в ту сторону, можно либо перепрограммировать направление вращения (смотрим в инструкции), либо перекинуть фазы предварительно отключив автомат.
  • Если вал вращается в нужном направлении, при помощи регулятора задаем требуемую частоту.

В некоторых моделях на экране отображается не частота вращения вала, а частота подаваемого напряжения. Если это так, необходимо будет по таблице пересчитывать значения.

Частотные преобразователи своими руками. Схема и принцип работы частотного преобразователя

Структурное устройство ЧП - фотография 30 - изображение 30

Впервые асинхронный двигатель был использован в конце 19-го века. Его успешное применение позволило внедрить данное оборудование практически на любой завод, фабрику, в любую отрасль промышленности. Однако управлять данным устройством оказалось довольно проблемно, особенно пуском и остановкой. Основной целью эксплуатации частотного преобразователя, а также целью его создания как раз и стала необходимость в устройстве, управляющем асинхронным двигателем.

Общая информация

Целесообразнее всего снабжать преобразователем частоты (ЧП) те устройства, которые обладают довольно высоким показателем мощности. Основная цель, для которой используется такое оборудование, - это изменение пускового тока. ЧП дает возможность задавать величину для этого параметра, что и обеспечивает более плавную остановку и запуск двигателя.

Частотные преобразователи на микроконтроллере - изображение 31 - изображение 31

Также можно отметить, что эти два устройства, работающие в паре, позволяют заменить такие устройства, как электроприводы постоянного тока. С одной стороны, регулировать скорость у такой системы очень просто, однако есть и слабое место в такой сети - сам электродвигатель. В электроприводах постоянного тока именно это устройство является наиболее дорогим и ненадежным. А если сравнивать асинхронное оборудование с прибором постоянного тока, то тут можно выделить явные преимущества: более простое и надежное устройство; масса, стоимость и габариты асинхронного приспособления будут гораздо ниже, чем у аппарата постоянного тока с той же мощностью.

Что такое частотный преобразователь

Стоит сказать о том, что регулировать числовое значение тока можно и вручную. Однако на это будет уходить определенное количество времени, так как человек не способен моментально среагировать на любое изменение, как машина. А это приведет к тому, что некоторое количество энергии будет уходить впустую, а энергетический ресурс двигателя выработается быстрее.

Частотный преобразователь для электродвигателя - это практически необходимая деталь, так как те устройства, которые не имели его, обладали значением тока, превышающим номинальное значение напряжение в 5-7 раз. Такая разница не позволит создавать приемлемые условия для эксплуатации двигателя.

Ремонт и наладка прибора - изображение 32 - изображение 32

Принцип работы частотного преобразователя кроется в том, что в нем используется специальный электронный механизм, который и управляет работой асинхронного двигателя. Также важно отметить, что ЧП позволяет не только настроить плавный запуск, но и выбрать оптимальный показатель между напряжением и частотой. Эта характеристика рассчитывается по определенной формуле.

Основное преимущество применения частотного преобразователя для двигателя - это экономия электрической энергии, значение которой доходит до 50 %. Еще одно важное преимущество ЧП - это возможность настроить его работу так, чтобы она максимально подходила под каждую отрасль производства. Применение такого устройства основывается на принципе работы двойного преобразования напряжения.

Первый этап - это регулировка напряжения, поступающего из сети. Оно выпрямляется и фильтруется. Эти операции осуществляются посредством системы конденсаторов.

Второй этап - включение в работу электронного управления системой. Этот элемент выставляет значение тока, которое будет соответствовать частоте, а также ранее выбранному режиму работы.

Основные показатели преобразователей - изображение 33 - изображение 33

Как можно заметить, принцип работы частотного преобразователя довольно прост.

Материалы для сборки

На сегодняшний день распространение и улучшение технологий и оборудования привело к тому, что, имея некоторые знания в электронике и умения, можно собрать ЧП для однофазного двигателя собственноручно.

Для того чтобы собрать это устройство, понадобятся такие материалы, как:

  • драйвер трехфазного моста модели IR2135 или 2133;
  • понадобится микроконтроллер, который будет использоваться как генератор PWM, модели AT90SPWM3B;
  • еще одна важная деталь - программатор;
  • три пары транзисторов;
  • жидкокристаллический индикатор;
  • шесть кнопок для управления системой.

Разновидности преобразователей частоты - фото 34 - изображение 34

Сборка устройства

Для начала работы необходимо иметь схему частотного преобразователя. Осуществлять сборку будет намного удобнее и быстрее, имея этот документ.

Первый шаг сборки - соединение обмоток двигателя. Для этого нужно использовать вариант подключения, который в электротехнике называется треугольник.

В сборке частотного преобразователя своими руками основой будут выступать две платы. Одна из них (первая) будет являться основой для размещения таких элементов, как блок питания, драйвер, транзисторы. Силовые клеммы также будут подключаться к этой плате. Вторая же плата необходима для крепления микроконтроллера и индикатора. Для того чтобы соединить эти два элемента между собой, нужно использовать гибкий шлейф. Чтобы изготовить импульсный блок, можно использовать самую простую схему.

Для того чтобы осуществлять контроль над работой двигателя, нет необходимости в добавлении внешних устройств. Однако если такое желание все же есть, то можно добавить схему IL300 в конструкцию.

Следующим важным элементом в сборке частотного преобразователя своими руками станет общий радиатор. В схеме этих устройств данный элемент используется для того, чтобы разместить на нем транзисторы и диодный мост. Один из обязательных шагов - это установка оптронов ОС2-4. Основное предназначение этих элементов - дублирование кнопок управления.

Классификация преобразователей частоты - фото 35 - изображение 35

При изготовлении частотного преобразователя своими руками для двигателя с мощностью до 400 Вт можно обойтись без термодатчика. Для того чтобы измерять напряжение, можно использовать обычный усилитель (DA-1-2). Необходимо также защитить все кнопки управления. Для этого используются пластиковые толкатели. Управление устройством осуществляется при помощи опторазвязки.

Последнее, что необходимо сделать при изготовлении частотного преобразователя своими руками, - это позаботиться о подавлении помех. Это необходимо делать лишь в том случае, если в системе используются слишком длинные провода. Когда ротор двигателя уже запущен, то можно выбрать любою скорость вращения, которая лежит в пределах частоты от 1 до 40.

Подключение

Собрать ЧП - это лишь половина дела. Вторая половина - это правильное подключение преобразователя к двигателю. Частотный преобразователь для насоса, работающего посредством использования асинхронного двигателя, может подключаться по двум методам. Выбор метода зависит от напряжения сети.

Если она обладает напряжением в 220 В и всего одной фазой, то наиболее выгодная схема подключения - это треугольник. Тут важно запомнить одну вещь. Выходной ток не может превышать номинальный более чем на 50 %.

Двухзвенные преобразователи частоты - фото 36 - изображение 36

Если подключать частотный преобразователь на 380 В и трех фазах, то для подсоединения к двигателю лучше всего прибегнуть к такой схеме, как звезда. Для того чтобы максимально упростить этот процесс, на покупных ЧП имеются специальные клеммы, которые обладают нужной маркировкой. На самодельном придется обойтись без этого.

Важно не забыть, что в любой системе, самодельной или покупной, должна быть схема, имеющая клемму для заземления.

Обслуживание устройства

Как уже говорилось ранее, просто собрать ЧП и подключить его - мало. Еще одна важная часть, которая гарантирует длительный срок службы устройства, - это обслуживание прибора. Частотный преобразователь для насоса, двигателя или любого другого устройства, должен подвергаться тщательному уходу:

  1. Наиболее страшный враг электронного оборудования - это пыль. Важно следить, чтобы на внутренних контактах она не скапливалась. Для удаления этих частиц мусора можно использовать компрессор с невысокой мощностью. Пылесос использовать нежелательно, так как он не сможет убрать плотный слой пыли.
  2. Необходимо регулярно проверять работоспособность всех узлов. При возникновении неполадок сразу их менять. Нормальный срок эксплуатации электролитического конденсатора - 5 лет, для предохранителя - 10 лет. Вентиляторы, работающие внутри устройства, нужно менять каждые 2-3 года, внутренние шлейфы - каждые 6 лет.
  3. Очень важно следить за такими параметрами, как температура внутренних элементов, а также напряжение на шине постоянного тока. Если температура повысится слишком сильно, то термопаста с большой долей вероятности высохнет, что приведет к выходу из строя конденсаторов. Чтобы избежать этой проблемы, рекомендуется менять термопасту каждые три года.
  4. Важно соблюдать следующие правила эксплуатации: температура окружающего воздуха не выше +40 градусов; помещение должно быть сухим, повышенная влажность недопустима; повышенная запыленность также отрицательно скажется на приборе.

Непосредственные преобразователи частоты - изображение 37 - изображение 37

Структурное устройство ЧП

Для того чтобы точно ответить на вопрос, как сделать частотный преобразователь, необходимо разобраться еще в одном пункте. Это - структурное устройство данного прибора.

Так как ориентироваться при изготовлении нужно на покупные модели, то и схема должна быть соответствующей. А это значит, что работать он должен на структуре двойного преобразования. У этой схемы имеются основные части: звено постоянного тока, силовой импульсный инвертор и система управления.

Если рассматривать более детально, то часть с постоянным током состоит из двух соединений: неуправляемый выпрямитель и фильтр. Именно в этом элементе переменное напряжение, которое действует в сети, будет преобразовываться в постоянное.

Второй элемент - силовой импульсный инвертор. Он является трехфазным, а состоит из шести транзисторных ключей. Они предназначены для подключения соответствующей обмотки двигателя к каждому из ключей как положительному, так и отрицательному. Этот элемент отвечает за преобразование поступающего постоянного напряжения в трехфазное и переменное. Также это устройство задает нужную частоту и амплитуду.

Последний элемент - это система управления. Здесь используются силовые IGBT-транзисторы. Если сравнивать с обычными тиристорами, то частота переключения у транзисторов выше. Это позволяет вырабатывать выходной сигнал в форме синусоиды с минимальным искажением.

Частотные преобразователи на микроконтроллере

Принцип работы таких устройств является следующим. Изначально характеристики всех микроконтроллеров (МК) настраиваются так, чтобы работать в паре с напряжением в 200 В, а также частотой поля в 50 Гц. Другими словами, они настроены по умолчанию для работы в паре с наиболее примитивными асинхронными двигателями 220 В/50 Гц. Также имеется такой показатель, как скорость набора частоты. По умолчанию это значение устанавливается как 15 Гц/сек. Это означает, что разгон МК до 50 Гц будет занимать чуть более чем 3 секунды, а, к примеру, до 150 Гц за 10 секунд ровно. Также важно отметить, что изначально ЧП является скалярным. Другими словами, чем выше будет выходная частота двигателя, тем выше будет его напряжение.

Ремонт и наладка прибора

Ремонт частотных преобразователей - неотъемлемая часть работы с этими устройствами. Довольно часто случается такая проблема, как выход из строя тормозного резистора. Если это происходит, то ЧП не сможет работать на полную мощность. Для того чтобы установить, вышел ли из строя тормозной элемент или нет, имеется таблица, в которой приведены все номинальные значения для всех типов элементов. Если после сверки с этим документом выяснилось, что какой-либо параметр не совпадает, то резистор нужно менять.

Также могут быть сбои в том случае, если ЧП оказался слишком мощным или же сеть слишком слабая для этой модели. Тут дело заключается в принципе работы элементов ЧП. Он рассчитан на эксплуатацию при постоянном высоком напряжении. Если параметры сети не дотягивают до минимальных показателей, требуемых для работы, то и выполнять свои функции он не сможет. Как таковой ремонт частотного преобразователя тут не требуется, необходимо купить менее мощный прибор.

Основные показатели преобразователей

К основным характеристикам этих устройств можно отнести следующее:

  • рабочее напряжение в пределах от 220 до 480 В;
  • все модели обладают защитой lP54;
  • температурный режим, требуемый для нормальной эксплуатации, в пределах от +10 до +40 градусов по Цельсию;
  • мощность для большинства покупных моделей - от 1 кВт.

Кроме того, существуют такие модели, как двухзвенные частотные преобразователи, а также такие разновидности, как матричные и векторные устройства. К примеру, векторный тип - это ЧП переменного тока и напряжение, которое подается на него, необходимое для создания нужной амплитуды. Этот тип прибора обеспечивает включение в работу двигателя спустя 2 секунды после запуска ЧП. Однако недостатком стало то, что он довольно дорогой, а потому его популярность стремительно падает.

Очень важно заметить, что подбирать просто мощный прибор - это неправильно. Выбор должен осуществляться в соответствии с рабочими параметрами сети. Если купить слишком мощный частотный преобразователь для электродвигателя, то получится, что будет переплата за то оборудование, которое будет представлять угрозу, а не регулировать работу агрегата.

Разновидности преобразователей частоты

Частотный преобразователь в асинхронных двигателях, принцип работы - изображение 38 - изображение 38

Настоящим прорывом в области регулируемого электропривода стало появление силовых преобразователей частоты или как их именуют в профильной среде — частотников. Это открытие кардинально изменило подход в проектировании систем электроприводов. Если относительно недавно при проектировании сложных механизмов, где без точного регулирование параметров (скорость, момент) не обойтись, выбирались двигатели постоянного тока — ДПТ, то с появлением частотников привода переменного тока начали активно вытеснять двигатели постоянного тока из данных систем. Даже в тяговых электроприводах асинхронный двигатель с коротко-замкнутым ротором вытесняет ДПТ последовательного возбуждения.

Содержание:

  • Классификация преобразователей частоты
  • Двухзвенные преобразователи частоты
  • Автономный инвертор напряжения с управляемым выпрямителем
  • Автономный инвертор напряжения с неуправляемым выпрямителем
  • Рекуперирующий двухзвенный преобразователь частоты на основе обратимого преобразователя напряжения
  • Рекуперирующие двухзвенный преобразователь частоты на основе инверторов тока
  • Непосредственные преобразователь частоты

Классификация преобразователей частоты

Техническое устройство, преобразующее переменное напряжения  одной частоты на входе, в изменяющееся по определенному закону переменное напряжение, но уже другой частотой на выходе называется преобразователем частоты (ПЧ). Бывают двух типов:

  • Непосредственные
  • Двухзвенные

Непосредственные – это реверсивный тиристорный преобразователь. Главное его достоинство в том, что он подключается напрямую в сеть без дополнительных устройств.

Двухзвенные – представляют собой транзисторный или тиристорный преобразователь. Но главное их отличие от непосредственных преобразователей в том, что для корректной и безопасной работы инвертора необходимо звено постоянного напряжения. Соответственно для подключения их к общепромышленным сетям необходим выпрямитель. Как правило изготавливаются комплектными (инвертор и выпрямитель поставляются вместе и работают от одной системы управления).

Двухзвенные преобразователи частоты

Двухзвенный или как его еще называют со звеном постоянного тока, созданный на базе АИН (автономный инвертор напряжения), содержит в комплекте выпрямитель и фильтр:

Сферы применения устройства - изображение 39 - изображение 39

ЭМ – электрическая машина, АИН – автономный инвертор напряжения, Lф, Сф – индуктивности и емкости фильтра, fнз – задание частоты выхода инвертора, udз – задание выходного напряжения для выпрямителя, если используются управляемые выпрямители, СУВ, СУИ – системы управления выпрямителем и инвертором соответственно, uнз – задание выходного напряжения инвертора, В – выпрямитель. Пунктиром показаны связи, которые включаются в систему в зависимости от типа устройства.

Для улучшения качества энергии в звене постоянного напряжения и сглаживании пульсаций напряжения и тока используют L-C фильтр. Зачастую он имеют Г – образную схему включения, как показано выше. Также иногда используют фазовый сдвиг в цепи переменного напряжения путем включения обмоток трансформатора в треугольник и звезду:

Принцип работы частотника - фотография 40 - изображение 40

Данная схема более дорогостоящая и может применяться только при использовании индивидуального трансформатора.

В данной системе выпрямитель может быть управляем или не управляем. Если он управляем, то функция регулирования напряжения ложится на него, если нет, то на АИН. Для рекуперации энергии в сеть выпрямитель должен быть полностью управляем и реверсивен (двухкомплектный). Управление частотным преобразователем производится импульсным методом. Самые распространенные методы это ШИР (широтно-импульсное регулирование) и ШИМ (широтно-импульсная модуляция).

Еще более широкое применение получили автономные инверторы тока (АИТ):

Применение в асинхронных двигателях - фото 41 - изображение 41

АИТ – автономный инвертор тока, СУИ, СУВ – системы управления преобразователями, УВ – управляемый выпрямитель, Lф – индуктивность фильтра, fнз – задание частоты выходного тока, іdз – задание выходного тока в звене постоянного тока.

В отличии от АИН, где регулируемой выходной величиной является напряжение, в АИТ регулируемой величиной является ток. Немаловажную роль в формировании выходного сигнала заданной частоты является частота коммутации транзисторов или тиристоров. Чем выше частота коммутации, тем лучше качество синусоиды на выходе частотника, но возрастают потери в преобразователе. Ниже приведен результат моделирования работы АИТ (на IGBT транзисторах) на активно-индуктивную нагрузку при различных частотах коммутации:

Основные составляющие прибора - фотография 42 - изображение 42

Принцип работы частотного преобразователя - изображение 43 - изображение 43

Частота коммутации 8000 Гц

Как видно из графиков уменьшение частоты коммутации очень плохо влияет на выходное качество тока. Поэтому для каждого устройства необходимо подбирать частоту коммутации частотника соответственно качеству выходного напряжения или тока. Для оптимизации данных процессов на выходе преобразователя частоты иногда ставят L-C фильтр, для сглаживания пульсаций токов и напряжений:

Принцип работы частотного преобразователя - фотография 44 - изображение 44

Как видим из схемы —  последовательно подключают индуктивность, для сглаживания пульсаций тока, и параллельно емкость, для сглаживания пульсаций напряжения.

Также работа частотника генерирует высшие гармоники в питающей сети:

Принцип работы частотного преобразователя - изображение 45 - изображение 45

Для уменьшения влияния высших гармоник на сеть используют фильтро-компенсирующие устройства (ФКУ)

Ниже показаны принципиальные схемы преобразователей частоты.

Автономный инвертор напряжения с управляемым выпрямителем

Принцип работы частотного преобразователя - фото 46 - изображение 46

Тиристоры VS1-VS6 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. При увеличении напряжения на емкости Сф выше заданного, транзистор VT7 открывается и вводится в работу тормозной резистор Rб, на котором рассеивается энергия переданная от электрической машины. При глубоком регулировании VD0 повышает коэффициент мощности выпрямителя.

Данный ПЧ не может рекуперировать энергию в сеть, а также насыщает выходное напряжение высшими гармониками и усложняет систему управления из-за необходимости управления УВ. При исполнении УВ двухкомплектным, рекуперирует энергию в сеть, но усложняет систему и делает ее более дорогостоящей. В настоящее время является устаревшим.

Автономный инвертор напряжения с неуправляемым выпрямителем

Принцип работы частотного преобразователя - изображение 47 - изображение 47

Диоды VD7-VD12 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. За счет использования ШИМ происходит регулирование амплитуды выходного напряжения и его частоты.

При использовании неуправляемого выпрямителя  для торможения двигателя АИН переводится в режим управляемого выпрямителя, работающего таким образом, что напряжение на емкости Сф выше заданного, несмотря на уменьшение скорости вращения двигателя. При увеличении напряжения на емкости Сф открывается транзистор VT7 и энергия выделяемая электродвигателем гасится на тормозном резисторе.

Данный способ торможения получил названия инверторного торможения, хотя инвертирования на самом деле нет. Это связано с тем, что термин динамическое торможение для систем с асинхронным двигателем занят, под ним понимается пропускания постоянного тока через обмотки двигателя.

Главным недостатком такой системы есть отсутствие возможности рекуперировать энергию в сеть, но она получила широкое применение для систем, где не требуется частое торможение.

Рекуперирующий двухзвенный преобразователь частоты на основе обратимого преобразователя напряжения

ОПН – обратимый преобразователь напряжения. В данной схеме имеется два ОПН. ОПН1 работает в выпрямительном режиме и передает энергию через ОПН2, работающий в инверторном режиме, к двигателю. При торможении ОПН2, подключенный к двигателю переходит в выпрямительный режим, а ОПН1, подключенный к сети, в инверторный режим. При этом происходит рекуперация энергии в сеть. Если задать схеме управления на входе cosφ = ± 1, то во всех режимах при регулировании и торможении двигателя из сети будет потребляться или в сеть будет отдаваться практически только активная мощность, а ток будет практически синусоидален, что определяет минимальное вредное влияние на питающую сеть. Эти преобразователи на сегодняшний день являются самыми близким к идеальным.

Принцип работы частотного преобразователя - фотография 48 - изображение 48

Ниже приведена функциональная схема данного устройства:

Принцип работы частотного преобразователя - изображение 49 - изображение 49

В схеме имеются следующие элементы: ОПН1, подключенный к сети, ОПН2, подключенный к двигателю, датчики тока и напряжения ДТ1 и ДН1 на стороне сети и ДТ2 и ДН2 на стороне постоянного напряжения. Требуемая мощность на стороне постоянного напряжения определяется измерением средних значений Ud и Id, а затем и мощности Pd с помощью вычислителя ВМ, куда поступают сигналы с ДН2 и ДТ2 через фильтр Ф. По действующему значению напряжения сети U1, определенному с помощью вычислителя напряжения ВН, и с учетом заданного угла φ1 определяется ток I1зад, обеспечивающий заданную мощность. Блок ФСН формирует синусоидальное напряжение, повторяющее напряжение сети, а блок «φ1» формирует заданную синусоиду с учетом фазового сдвига φ1. В блоке «ЗАД i1» формируется заданная синусоида тока. В модуляторе М она сравнивается с сигналом датчика тока ДТ1 i1, и формируются управляющие импульсы, которые через усилитель мощности УМ поступают на транзисторы. Блок НТ определяет направление тока (выпрямительный или инверторный режим). Блок выбора режима ВР в соответствии с сигналом от НТ задает угол φ1.

Преимущества двухзвенного рекуперирующего ПЧ: независимость выходной частоты от входной, возможность получения высокого коэффициента мощности на стороне сети. К недостаткам можно отнести: высокая стоимость, сложность системы управления.

Рекуперирующие двухзвенный преобразователь частоты на основе инверторов тока

Автономный инвертор тока, преобразовывает постоянный ток, подаваемый на его вход, в пропорциональный по величине переменный ток. Режим источника тока на входе обеспечивается за счет большой индуктивности L и применения токостабилизирующей обратной связи, поддерживающей заданное значение тока Idз. АИТ выполнен по схеме с отсекающими диодами. Рекуперация энергии при торможении в АИТ возможна при сохранении направления тока за счет сдвига токов и напряжений, т.е. переводом АИТ в режим выпрямления за счет сдвига управляющих импульсов относительно фазных ЭДС электрической машины.

Энергия, передаваемая от электрической машины на сторону постоянного напряжения, должна быть далее передана в сеть переменного напряжения. Для этого управляемый выпрямитель на входе ПЧ должен быть переведен в инверторный режим. При этом сохраняется направление тока и не требуется установка дополнительного комплекта вентилей. Схема применяется в двигателях достаточно большой мощности. Недостатками схемы являются ее не очень хорошие характеристики, поэтому она не является перспективной.

Принцип работы частотного преобразователя - фото 50 - изображение 50

Появление запираемых тиристоров позволило улучшить характеристики ДПЧ на основе АИТ.

Принцип работы частотного преобразователя - фотография 51 - изображение 51

Формирование выходного тока осуществляется совместно управляемым выпрямителем и автономным инвертором тока.

Принцип работы частотного преобразователя - изображение 52 - изображение 52

Показана временная диаграмма, отражающая моменты включенного и выключенного состояний тиристора V1. На участке соответствующим зоне 2, ключ V1 включен постоянно, и ток сглаживающего дросселя непрерывно поступает в фазу А двигателя. Для формирования тока в зонах 1 и 3 необходимо соответствующим образом переключать тиристоры. Для обеспечения нарастания и спадания тока (зоны 1 и 3) обычно используется два метода – трапецеидальный и метод выборочного исключения гармоник.

При использовании первого метода моменты коммутации ключей АИТ определяются по пересечению линейно нарастающего сигнала и опорного сигнала пилообразной формы следующего с несущей частотой, при втором методе моменты коммутации ключей рассчитываются заранее исходя из условия подавления высших гармоник определенного порядка (5 и 7 и т.д.). В этой схеме улучшается синусоидальность тока, протекающего по фазам двигателя. Но сохраняются все недостатки, возникающие при питании от сети управляемых выпрямителей напряжения. Преобразователи частоты на основе инверторов тока наиболее применимы в электроприводе синхронных машин, где на выходе вместо автономного инвертора тока включается инвертор тока, ведомый электрической машиной.

Таким образом, на входе и на выходе ПЧ включаются однокомплектные рекуперирующие преобразователи (ОРП) на тиристорах. При этом ведомый инвертор полностью аналогичен выпрямителю, подключенному к сети. Коммутация вентилей ведомого инвертора осуществляется за счет ЭДС электрической машины.При низкой скорости вращения электрической машины эта ЭДС недостаточна для коммутации вентилей. Поэтому при пуске коммутация осуществляется путем прерывания тока в цепи постоянного тока включением и запиранием выпрямителя.

Принцип работы частотного преобразователя - фотография 53 - изображение 53

Непосредственные преобразователи частоты

При использовании НПЧ напряжение из сети подается через управляемые вентили на двигатель. В каждой фазе НПЧ установлен реверсивный двухкомплектный преобразователь с совместным или раздельным управлением силовыми комплектами.

На рис. 1а приведена схема трехфазно-однофазного НПЧ на основе трехфазных нулевых схем. Он преобразует трехфазное напряжение в однофазное, но с регулируемой частотой.Комплекты В и Н переключаются, и на выходе получается двуполярное напряжение. Для управления преобразователями используют определенные законы управления — прямоугольный и синусоидальный. Если используют прямоугольный принцип управления, то алгоритм работы будет таков: при прохождении одной полуволны напряжения, на один из комплектов подаются управляющие импульсы с углом управления (углом задержки) a = const. Этот комплект будет работать в режиме выпрямителя, а затем с углом управления (углом опережения) b = a. Чтоб снизить ток необходимо перейти в инверторный режим (рис. 1 б). Для избежания короткого замыкания в самом инверторе необходимо чтоб ток снизился до нуля – это называется бестоковой паузой. После осуществления бестоковой паузы в работу включается второй комплект.

Если используют синусоидальное управление, то гладкая составляющая выходного напряжения должна изменятся по синусоидальному закону, для этого угол управления a непрерывно меняется (рис. 1 в).

Принцип работы частотного преобразователя - фотография 54 - изображение 54

Схема трехфазно-трехфазного НПЧ, выполненного на основе трехфазных мостовых схем. Ниже приведена схема.

Принцип работы частотного преобразователя - изображение 55 - изображение 55

Данный тип преобразователей не получил широкого применения из-за ряда недостатков при его применении. А это: невозможность полного регулирования выходной частоты (при использовании трехфазных мостовых схем диапазон регулирования 25-45 Гц, а при нулевых 15-45 Гц). Постоянная коммутация вентилей, что приводит к ухудшению коэффициента мощности, а также плохое качество выходного напряжения и большое влияние на питающую сеть.

Преимуществом можно признать то, что у таких преобразователей более высокий КПД, из-за однократного преобразования энергии.

Наиболее распространены преобразователи частоты на базе АИТ и АИН на IGBT транзисторах, в силу лучших показателей качества энергии на выходе преобразователя и их влияния на сеть.

Частотный преобразователь в асинхронных двигателях, принцип работы

Принцип работы частотного преобразователя - изображение 56 - изображение 56

Принцип работы частотного преобразователя - изображение 57 - изображение 57

Чаще всего преобразователи частоты используются для асинхронного двигателя, но встречаются они и в бытовой технике. Несмотря на распространённость, они обладают не только преимуществами, но и недостатками, устранять которые приходится, используя дополнительные приборы. Все преобразователи выполняют важную функцию, и представить хоть одно производство без частотника для асинхронных двигателей невозможно.

Содержание

  • Сферы применения устройства
  • Принцип работы частотника
  • Применение в асинхронных двигателях
  • Основные составляющие прибора

Сферы применения устройства

Принцип работы частотного преобразователя - фотография 58 - изображение 58

Преобразователь частоты – это специальное устройства, которое устанавливается на мощные электродвигатели. Их главное предназначение - изменение частоты поступающего тока. Как известно, ток, который поступает из розетки имеет частоту, она равна 50 Гц. Для того чтобы ускорить или наоборот замедлить двигатель, эту частоту можно изменять. Роль, которую играет частотник – изменение частоты тока.

Самый яркий пример - это стиральные машины, они имеются у каждого в доме, для ускорения частоты вращения барабана частотник электродвигателя увеличивает частоту тока, чтобы уменьшить количество оборотов, производится обратное действие. Также их используют для плавного запуска мощных двигателей: современные частотники, могут изменять колебание тока от 1-800 Герц.

Принцип работы частотника

В основе работы частотника лежит инвертор с двойным преобразованием. Преобразователь работает по следующей схеме:

  • Принцип работы частотного преобразователя - изображение 59 - изображение 59

    Вначале переменный синусоидальный ток (220-380 В), поступающий в инвертор выпрямляется. Для выпрямления используется диодный мост.
  • После ток поступает на группу конденсаторов, где он фильтруется и сглаживается.
  • Далее, мостовые ключи из биполярных транзисторов (IGBT, БТИЗ) и управляющие микросхемы принимают отфильтрованный ток и формируют из него трёх или однофазную широтно-импульсную модуляцию с требуемыми параметрами.
  • На выходе получается синусоидальный ток с уже изменёнными характеристиками, синусоидальность обеспечивается индуктивностью обмоток.

Более подробно весь процесс изображён на следующей схеме:

Применение в асинхронных двигателях

Принцип работы частотного преобразователя - фото 60 - изображение 60

Асинхронные двигатели превосходят по мощности и производительности обычные электродвигатели, но при этом они обладают рядом недостатков. Основным из них является необходимость увеличения номинальной мощности при запуске в 5-7 раз, а также то, что для регулирования скорости вращения ротора необходимо использовать специальные устройства. Увеличение потребляемой мощности при запуске порождает скачки внутри сети и ударные импульсы, в свою очередь, это негативно влияет на срок службы любого асинхронного двигателя.

Для решения всех проблем сразу был разработан асинхронный преобразователь частоты. Их использование удобно тем, что работа частотника происходит в автоматическом режиме, и поэтому контроль за токами происходит постоянно. Это устройство уменьшает пусковые токи, тем самым не создавая перегрузок в сети и не нанося вред двигателю, также он позволяет регулировать частоту вращения ротора. Отпадает необходимость в использовании магнитного пускателя. Главные плюсы частотника:

  • экономия электроэнергии;
  • увеличение долговечности двигателя;
  • возможность регулирования работы двигателя;
  • обеспечивает обратную связь смежных приводов.

В действительности, это настоящий генератор трехфазного напряжения, при помощи которого можно добиться нужной величины и частоты.

Основные составляющие прибора

В состав любого частотника входит четыре главных модуля:

  • выпрямитель;
  • блок фильтрации напряжения;
  • инверторный узел;
  • система управления на базе микропроцессора.

Все эти модули соединены блоком управления, он контролирует системы и отвечает за работу выходного каскада, выдаваемого инвертором. Современные устройства подобного типа также обладают определёнными защитными узлами, которые защищают его от превышения тока и коротких замыканий. Также они оборудованы датчиками слежения за температурой и прочими системами, позволяющими отслеживать отклонения от нормы при его работе.

Несмотря на то что частотник должен выпрямлять ток и держать постоянную его частоту, полностью сгладить пульсации он не может, это связано с переменной составляющей и непостоянством тока в самой сети. Для того чтобы полностью убрать эти колебания, используются катушки индуктивности и конденсаторы. Их подключение и настройка происходит, как правило, в системе частотного преобразователя. Катушка сглаживает ток, благодаря своему реактивному сопротивлению, в свою очередь, конденсатор, пропуская через себя ток, выдаёт не переменное, а постоянное напряжение.

Встречаются частотные преобразователи как для однофазных сетей, так и для трехфазных. Также они могут отличаться по типу управления, существуют векторные и скалярные модели. Векторные применяются в тех случаях, когда необходимо жёстко регулировать частоту вращения ротора, второй тип частотников используется на объектах, где нет особой необходимости в жёстком регулировании подаваемой частоты, их можно встретить в вентиляционных системах. Скалярный тип управления используется для однофазных систем, в свою очередь, векторная для трехфазных. Принцип регулирования частоты в обоих случаях остаётся одинаковым.

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 193)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты