Принцип работы гидравлики

Принцип работы гидропривода

Принцип работы гидропривода - фото 1 - изображение 1

Гидравлический привод (объемный гидропривод) это совокупность объемных гидромашин, гидроаппаратуры и других устройств, предназначенная для передачи механической энергии и преобразования движения посредством жидкости. (Т.М Башта Гидравлика, гидромашины и гидроприводы).

В гидропривод входят один или несколько гидродвигателей, источники энергии жидкости, аппаратура управления соединительные линии.

Работа гидравлического привода основана на принципе гидравлического рычага

Рассмотрим систему.

Распределитель в гидроприводе - фото 2 - изображение 2

В данной системе усилие создаваемое на поршне 2 можно определить по зависимости:

Гидравлическая система: расчет, схема, устройство. Типы гидравлических систем. Ремонт. Гидравлические и пневматические системы - фотография 3 - изображение 3

Получается, что усилие зависит от отношения площадей, чем больше будет площадь второго поршня, и чем меньше площадь первого, тем значительнее будет разница между силами F1 и F2. Благодаря принципу гидравлического рычага можно получить большое усилие, приложив малое.

Выигрывая в усилии на гидравлическом рычаге, придется пожертвовать перемещением, переместив малый поршень на величину l1, получим перемещение поршня 2 на величину l2:

Учитывая, что площадь поршня S2 больше площади S1, получим что перемещение l2 меньше чем l1.

Гидравлический привод не был бы так полезен, если бы потерю в перемещении не удалось скомпенсировать, а сделать это удалось благодаря особым гидравлическим устройствам - обратным клапанам.

Обратный клапан - это устройство для запирания потока движущегося в одном направлении, и свободного пропускания обратного потока.

Если в рассмотренном примере, на выход камеры с поршнем 1 установить обратный клапан, так чтобы жидкость могла выйти из камеры, а обратно перетечь не могла. Второй клапан нужно установить на между камерой с поршнем 1 и дополнительным баком с жидкостью, таким образом чтобы, жидкость могла попасть в камеру с поршнем, а из этой камеры обратно в бак перетечь не могла.

Новая система будет выглядеть следующим образом.

Сфера использования - фотография 4 - изображение 4

Приложив к поршню усилие F1 и переместив его на расстояние l1, получим перемещение поршня с усилием F2 на расстояние l2. Затем отведем поршень 1 в начальное расстояния, из камеры с поршнем 2 жидкость перетечь обратно не сможет - не позволит обратный клапан - поршень 2 останется на месте. В камеру с поршнем один поступит жидкость из бака. Затем, нужно вновь приложить усилие F1 к поршню 1 и переместить его на расстояние l1, в результате поршень 2 вновь переместится на расстояние l2 с усилием F2. А по отношению к начальному положению, за два цикла поршень 2 переместится на расстояние 2*l2. Увеличивая число циклов, можно получить большую величину перемещения поршня 2.

Именно возможность увеличивать перемещение наращивая число циклов, позволила гидравлическому рычагу опередить механический с точки зрения возможного развиваемого усилия.

Приводы, где требуется развивать огромные усилия, как правило, гидравлические.

Узел с камерой и поршнем 1, а также с обратными клапанами в гидравлике называют насосом. Поршень 2 с камерой - гидравлическим двигателем, в данном случае - гидроцилиндром.

Распределитель в гидроприводе

Что делать, если в рассматриваемой системе нужно, вернуть поршень 2 в начальное положение? В текущей комплектации системы - это невозможно. Жидкость из под поршня 2 не может перетечь обратно - не позволит обратный клапан, значит необходимо устройство, позволяющее отправить жидкость в бак. Можно воспользоваться простым краном.

Принцип действия - фотография 5 - изображение 5

Но в гидравлике есть специальное устройство для направления потоков - распределитель, позволяющий направлять потоки жидкости по нужной схеме.

Устройство промышленных систем - изображение 6 - изображение 6

Полученную систему можно считать простейшим гидравлическим приводом.

Ознакомимся с работой полученного гидропривода.

Устройства в гидравлических приводах

Современные гидроприводы представляют собой сложные системы, состоящие из множества элементов. Конструкция которых не отличается простотой. В представленном примере такие устройства отсутствуют, т.к. они предназначены, как правило, для достижения нужных характеристик привода.

Наиболее распространенные гидравлические аппараты

  • Предохранительные клапаны
  • Редукционные клапаны
  • Регуляторы расхода
  • Дроссели

Информацию о гидравлических аппаратах вы можете получить на нашем сайте в разделе - Гидравлика, гидроприводы. Если у вас остались вопросы, задавайте их в комментариях к данной статье.

Гидравлическая система: расчет, схема, устройство. Типы гидравлических систем. Ремонт. Гидравлические и пневматические системы

Преимущества и недостатки гидравлических систем - изображение 7 - изображение 7

Гидравлическая система представляет собой устройство, предназначенное для преобразования небольшого усилия в значительное с использованием для передачи энергии какой-либо жидкости. Разновидностей узлов, функционирующих по этому принципу, существует множество. Популярность систем этого типа объясняется прежде всего высокой эффективностью их работы, надежностью и относительной простотой конструкции.

Расчет гидравлической системы - фото 8 - изображение 8

Сфера использования

Широкое применение системы этого типа нашли:

  1. В промышленности. Очень часто гидравлика является элементом конструкции металлорежущих станков, оборудования, предназначенного для транспортировки продукции, ее погрузки/разгрузки и т. д.
  2. В авиакосмической отрасли. Подобные системы используются в разного рода средствах управления и шасси.
  3. В сельском хозяйстве. Именно через гидравлику обычно происходит управление навесным оборудованием тракторов и бульдозеров.
  4. В сфере грузоперевозок. В автомобилях часто устанавливается гидравлическая тормозная система.
  5. В судовом оборудовании. Гидравлика в данном случае используется в рулевом управлении, входит в конструктивную схему турбин.

Принцип действия

Работает любая гидравлическая система по принципу обычного жидкостного рычага. Подаваемая внутрь такого узла рабочая среда (в большинстве случаев масло) создает одинаковое давление во всех его точках. Это означает то, что, приложив малое усилие на маленькой площади, можно выдержать значительную нагрузку на большой.

Далее рассмотрим принцип действия подобного устройства на примере такого узла, как гидравлическая тормозная система автомобиля. Конструкция последней довольно-таки проста. Схема ее включает в себя несколько цилиндров (главный тормозной, заполненный жидкостью, и вспомогательные). Все эти элементы соединены друг с другом трубками. При нажатии водителем на педаль поршень в главном цилиндре приходит в движение. В результате жидкость начинает перемещаться по трубкам и попадает в расположенные рядом с колесами вспомогательные цилиндры. После этого и срабатывает торможение.

Типы гидравлических систем - фотография 9 - изображение 9

Устройство промышленных систем

Гидравлический тормоз автомобиля — конструкция, как видите, довольно-таки простая. В промышленных машинах и механизмах используются жидкостные устройства посложнее. Конструкция у них может быть разной (в зависимости от сферы применения). Однако принципиальная схема гидравлической системы промышленного образца всегда одинакова. Обычно в нее включаются следующие элементы:

  1. Резервуар для жидкости с горловиной и вентилятором.
  2. Фильтр грубой очистки. Этот элемент предназначен для удаления из поступающей в систему жидкости разного рода механических примесей.
  3. Насос.
  4. Система управления.
  5. Рабочий цилиндр.
  6. Два фильтра тонкой очистки (на подающей и обратной линиях).
  7. Распределительный клапан. Этот элемент конструкции предназначен для направления жидкости к цилиндру или обратно в бак.
  8. Обратный и предохранительный клапаны.

Работа гидравлической системы промышленного оборудования также основывается на принципе жидкостного рычага. Под действием силы тяжести масло в такой системе попадает в насос. Далее оно направляется к распределительному клапану, а затем - к поршню цилиндра, создавая давление. Насос в таких системах предназначен не для всасывания жидкости, а лишь для перемещения ее объема. То есть давление создается не в результате его работы, а под нагрузкой от поршня. Ниже представлена принципиальная схема гидравлической системы.

Как выполняется ремонт - изображение 10 - изображение 10

Преимущества и недостатки гидравлических систем

К достоинствам узлов, работающих по этому принципу, можно отнести:

  • Возможность перемещения грузов больших габаритов и веса с максимальной точностью.
  • Практически неограниченный диапазон скоростей.
  • Плавность работы.
  • Надежность и долгий срок службы. Все узлы такого оборудования можно легко защитить от перегрузок путем установки простых клапанов сброса давления.
  • Экономичность в работе и небольшие размеры.

Помимо достоинств, имеются у гидравлических промышленных систем, конечно же, и определенные недостатки. К таковым относят:

  • Повышенный риск возгорания при работе. Большинство жидкостей, используемых в гидравлических системах, являются горючими.
  • Чувствительность оборудования к загрязнениям.
  • Возможность протечек масла, а следовательно, и необходимость их устранения.

Пневматические системы - фото 11 - изображение 11

Расчет гидравлической системы

При проектировании подобных устройств принимается во внимание множество самых разных факторов. К таковым можно отнести, к примеру, кинематический коэффициент вязкости жидкости, ее плотность, длину трубопроводов, диаметры штоков и т. д.

Основными целями выполнения расчетов такого устройства, как гидравлическая система, чаще всего является определение:

  • Характеристик насоса.
  • Величины хода штоков.
  • Рабочего давления.
  • Гидравлических характеристик магистралей, других элементов и всей системы в целом.

Производится расчет гидравлической системы с использованием разного рода арифметических формул. К примеру, потери давления в трубопроводах определяются так:

  1. Расчетную длину магистралей делят на их диаметр.
  2. Произведение плотности используемой жидкости и квадрата средней скорости потока делят на два.
  3. Перемножают полученные величины.
  4. Умножают результат на коэффициент путевых потерь.

Сама формула при этом выглядит так:

  • ∆pi = λ х li(p) : d х pV2 : 2.

В общем, в данном случае расчет потерь в магистралях выполняется примерно по тому же принципу, что и в таких простых конструкциях, как гидравлические системы отопления. Для определения характеристик насоса, величины хода поршня и т. д. используются другие формулы.

Что такое гидравлический насос, какие бывают типы и принцип работы - изображение 12 - изображение 12

Типы гидравлических систем

Подразделяются все такие устройства на две основные группы: открытого и закрытого типа. Рассмотренная нами выше принципиальная схема гидравлической системы относится к первой разновидности. Открытую конструкцию имеют обычно устройства малой и средней мощности. В более сложных системах закрытого типа вместо цилиндра используется гидродвигатель. Жидкость поступает в него из насоса, а затем снова возвращается в магистраль.

Как выполняется ремонт

Поскольку гидравлическая система в машинах и механизмах играет значимую роль, ее обслуживание часто доверяют высококвалифицированным специалистам занимающихся именно этим видом деятельности компаний. Такие фирмы обычно оказывают весь комплекс услуг, связанных с ремонтом спецтехники и гидравлики.

Что это, назначение и принцип работы устройства - фотография 13 - изображение 13

Разумеется, в арсенале этих компаний имеется все необходимое для производства подобных работ оборудование. Ремонт гидравлических систем обычно выполняется на месте. Перед его проведением при этом в большинстве случаев должны быть произведены разного рода диагностические мероприятия. Для этого компании, занимающиеся обслуживанием гидравлики, используют специальные установки. Необходимые для устранения проблем комплектующие сотрудники таких фирм также обычно привозят с собой.

Пневматические системы

Помимо гидравлических, для приведения в движение узлов разного рода механизмов могут использоваться пневматические устройства. Работают они примерно по тому же принципу. Однако в данном случае в механическую преобразуется энергия сжатого воздуха, а не воды. И гидравлические, и пневматические системы довольно-таки эффективно справляются со своей задачей.

Технические характеристики и параметры выбора - фото 14 - изображение 14

Плюсом устройств второй разновидности считается, прежде всего, отсутствие необходимости в возврате рабочего тела обратно к компрессору. Достоинством же гидравлических систем по сравнению с пневматическими является то, что среда в них не перегревается и не переохлаждается, а следовательно, не нужно включать в схему никаких дополнительных узлов и деталей.

Что такое гидравлический насос, какие бывают типы и принцип работы

Виды - фото 15 - изображение 15

Инструменты и технические аппараты, работа которых связана с использованием энергии жидкостей, называют гидравлическими механизмами. В машиностроении их популярность основана на возможности передавать с потоком, через гибкие шланги и тонкие трубопроводы, огромные объемы энергии.

Что это, назначение и принцип работы устройства

Один из классов машин – гидравлический насос – является оборудованием по преобразованию механической энергии (вращения и крутящего момента приводного электрического двигателя; перемещения поршня при нажиме и поднятия рычага в ручной конструкции) в гидравлическую энергию жидкости (образование давления; подача или ход рабочего органа, например, штока гидроцилиндра).

Шестеренные - изображение 16 - изображение 16

Классификация и деление насосов на виды не влияет на общий принцип действия механизмов – вытеснение рабочей среды.

Работающий аппарат перемещает жидкость из полости всасывания (входной) в полость нагнетания (выходную) через изолированные камеры.

Выходящая из корпуса механизма жидкость имеет повышенное давление, обусловливающее ее перемещение по трубопроводу. Так как полости не соединены напрямую, устройства имеют идеальную адаптацию для работы в системах гидравлики с высоким давлением. Жидкость на выходе передает энергию поршню, перемещая его, или циркулирует в замкнутом контуре.

Гидравлические насосы высокого давления – обязательные элементы гидравлического привода, поэтому востребованы повсеместно. Основные области применения:

  • Машиностроение, нефтепереработка, транспорт, сельское хозяйство, другие производственные и перерабатывающие отрасли.
  • Оснащение мобильных моек, мастерских, предприятий коммунального хозяйства, строительных площадок.
  • Системы чистки автомобилей, пожаротушения, подавления пыли, очистки труб, мытья улиц.
  • Помпа – инженерная, погружная.

Технические характеристики и параметры выбора

Основными техническими характеристиками гидронасоса являются:

  1. Частота вращения, об/мин.
  2. Рабочий объем, вытесняемый за оборот вала, см3/об.
  3. Рабочее давление.

Запомните! Основные единицы для измерения давления имеют следующее соотношение: 1 атм=1,013 бар=0,101 МПа=1,03 кгс/см2.

Выбор насоса для конкретной гидросистемы производится с учетом следующих критериев:

  • Вид элемента, вытесняющего жидкость – поршень, шестерня, пластина.
  • Требуется ручной или гидронасос с электроприводом.
  • Пределы рабочего давления.
  • Со средой какой вязкости сможет работать механизм.
  • Рабочий объем.
  • Частотный интервал работы.
  • Легкость обслуживания.
  • Габариты.
  • Цена.

Виды

Ручные

Конструкция ручных стандартных помп представляет цилиндрическую полость с поршнем, который жестко соединен со штоком. Шток, в свою очередь, через шарнир соединяется с приводным рычагом. В поршне находится промежуточный клапан, он связывает полости – поршневую и штоковую. Поршневую полость от резервуара с маслом отделяет впускной клапан, перед которым стоит фильтр. Штоковая полость отделена от выходного порта изделия выпускным клапаном.

Пластинчатые - фотография 17 - изображение 17

Рычаг ручного (мускульного) аппарата высокого давления легко перемещается рукой или ногой (через педаль с возвращающей пружиной). При подъеме рычага поршень штоком поднимается, открывается впускной клапан и поршневая полость заполняется жидкостью. В это время закрытый промежуточный затвор не допускает ее переток из штоковой полости в поршневую. Во время движения рычага вниз давление жидкости закрывает впускной и поднимает промежуточный клапан. Жидкость попадает в штоковую полость, открывает выпускной затвор и вливается в гидросистему. С каждым циклом подъема-опускания рычага насос вытесняет в систему порцию воды или масла. Таков принцип работы механизма одностороннего действия.

В ручных механизмах двустороннего действия к верху и низу цилиндрической полости подведены параллельные линии всасывания жидкости из бака и ее нагнетания в трубопровод. При любом ходе поршня – вверх или вниз – один из пары впускных и выпускных клапанов открывается. В результате обеспечивается более производительная работа насоса с непрерывной и равномерной подачей рабочей жидкости.

Простое устройство гидроаппарата, требующего приложения мускульной силы, объясняет его широкое применение в производстве, индивидуальном хозяйстве, автосервисе, строительстве. Модели данного типа становятся составной частью различных механизмов:

  • испытательных стендов;
  • лабораторного оборудования;
  • грузоподъемных кранов и платформ;
  • статических гидроинструментов;
  • водяных бытовых опрыскивателей;
  • домкратов;
  • прессового оборудования.

Главный минус – низкая производительность. К достоинствам можно отнести: надежность; простоту конструкции; низкую стоимость; работу без электропривода, следовательно, независимость от наличия источников электропитания; автономность; малый размер и вес; возможность быстро выполнить необходимый ремонт своими руками.

Изделия под отечественным брендом НРГ особенно популярны в частных гаражах, сфере автосервиса, ремонтных и индивидуальных мастерских.

Радиально-поршневые

Основное применение устройств данного типа – подъемное и прессовое оборудование, протяжные станки.

Типы поршневых гидравлических насосов с радиальным расположением цилиндров:

  • Конструкции с ротором, смещенным относительно оси статора. Радиальные цилиндрические расточки ротора являются цилиндрами. В них располагаются поршни, при вращении ротора прижимаемые к стенкам обоймы неподвижного корпуса. Поршни вращающегося ротора приходят в возвратно-поступательное движение с ходом, равным удвоенному смещению (эксцентриситету). Внутри расположена неподвижная распределительная ось, выполняющая роль золотника. Проточки оси соединены с входной и напорной линией привода. Поворот ротора на 180° приводит поршень в поступательное движение к максимально выдвинутому положению. В это время камера цилиндра увеличивает объем и всасывает масло через проточку распределительной оси. Совершая следующие пол-оборота, поршень возвращается в тело ротора и вытесняет масло уже в напорную полость распределителя. Изменяя величину эксцентриситета, регулируют производительность механизма. Меняя эксцентриситет по знаку, то есть, перемещая ротор к противоположной стенке корпуса, добиваются изменения потока жидкости – реверса.
  • С соосным расположением статора и ротора. Но группа поршней уже имеет радиальное расположение в статоре, а на роторе присутствует эксцентричный кулачок. В каждом поршне конструктивно заложены два клапана – всасывания и нагнетания. Вращение эксцентричного кулачка приводит к последовательной работе клапанов, обеспечивая переток рабочей жидкости. Конструкции этого типа чаще применяются в гидромоторах.

Преимущества конструкции:

  1. Надежность.
  2. В регулируемых вариантах конструкции легко настроить нужную производительность.
  3. Показаны к применению в реверсивных системах с изменяемым направлением потока жидкости.
  4. Пониженная шумность работы.
  5. Небольшой осевой габарит.
  6. Простота механизма.

Недостатки:

  1. Низкочастотность (до 2000 об/мин.) вращения ротора.
  2. Инерционность вращающегося ротора.
  3. Присутствие пульсации. Эффект значительно сглаживается при нечетном количестве поршней.
  4. Большой вес.

В производственной сфере распространены нерегулируемые эксцентриковые агрегаты общемашиностроительного применения – Н400-Н403.

Аксиально-поршневые

Самые распространенные механизмы гидроприводов. Вытеснителем жидкости из цилиндра выступает плунжер или поршень. Все цилиндры находятся в едином блоке и они параллельны с осями блока. Возвратно-поступательный ход поршней обеспечивается наклоном блока цилиндров к диску ведущего вала или конструктивным наклонным исполнением самого диска. Работа группы цилиндров сходна с радиально-поршневым устройством.

Запомните! Утечки цилиндров отводятся по дренажному сливу. Если его заглушить, можно спровоцировать повышение внутреннего давления с последующим повреждением корпуса и разгерметизацией гидронасоса.

Достоинства:

• Большая мощность и скорость вращения при компактности и небольшом весе агрегатов.

• Вариативность конструктивных исполнений.

• Небольшие рабочие органы имеют малый инерционный момент.

Недостатки:

• Цена механизмов высокая.

• Подача и расход жидкости сопровождаются существенной пульсацией.

• Конструктивная сложность. Следовательно, чувствительность к неправильной эксплуатации, продолжительный ремонт.

Отечественная модель НП-90 дешевле зарубежных насосов, востребована благодаря богатой комплектации и качеству сборки.

Шестеренные

Роторные гидромашины этого вида нашли применение в системах смазки, дорожной и сельскохозяйственной спецтехнике, мобильных гидравлических конструкциях. К их плюсам относят:

  • простоту конструктивного исполнения;
  • работу на частотах до 5000 об/мин.;
  • небольшой вес;
  • компактность.

Заметные минусы:

  • рабочее давление до 20 МПа;
  • низкий КПД;
  • небольшой ресурс;
  • проблемы пульсации.

Рабочими вытесняющими элементами конструкции являются две шестерни. Они различаются по виду зацепления:

  • Внешнее. Со стороны входа шестерни вращаются в разные стороны, захватывают жидкость впадинами зубьев и перемещают ее вдоль стенок корпуса к выходу из насоса. Когда зубья входят в зацепление, рабочая жидкость выталкивается из впадин к выходу из корпуса.
  • Внутреннее. Принцип работы не меняется. Жидкость переносится в область нагнетания во впадинах между зубьями шестерни вдоль поверхности вспомогательного серпообразного разделителя. Пульсация давления и уровень шума в таких агрегатах снижаются.

Разновидностью рассматриваемой системы зацепления являются героторные (без разделителя, шестерни постоянно контактируют благодаря особому профилю зубьев) и винтовые конструкции.

НШ-10 – известная и надежная модель шестеренного насоса с высококачественной сборкой.

Пластинчатые

В этих гидромашинах пластины, размещенные на роторе, выполняют основную работу. Специальные пружины усиливают их прижим к неподвижному корпусу. Соседние элементы становятся ограничителями объемной камеры, в ней рабочая среда при вращении ротора попадает из полости подачи к полости нагнетания. Присутствие двух и более областей всасывания и стольких же зон входа в систему свойственно конструкциям двукратного или многократного действия.

Нужно знать: регулируемыми могут быть только механизмы однократного действия.

Достоинства пластинчатых насосов:

  1. Пониженная пульсация.
  2. Снижение рабочего шума.
  3. Пониженные требования к засоренности перемещаемой среды.
  4. Регулируемый рабочий объем.

Минусы:

  1. Подшипники ротора сильно нагружены.
  2. Низкое давление.
  3. Сложность при уплотнении пластин на торцах.
  4. Низкая ремонтопригодность.

Г12 – популярная марка одно- и двухпоточных пластинчатых конструкций.

Полезно видео

Подробно об НШ-10:

Принцип действия разных вариантов:

Гидравлический распределитель: устройство, принцип работы, типы

Полезно видео - фотография 18 - изображение 18

Гидравлический распределитель – специальное устройство, применяемое в производственных механизмах, которое позволяет менять направление движения жидкости. Он необходим для контроля точности смены потоков, которые должны сменяться в определенной последовательности для включения механизмов. Распределитель может монтироваться к основному механизму с помощью различных креплений. Чаще всего применяется резьбовое, фланцевое и стыковое крепление. Для высокой точности работы обычно применяются электрогидравлические распределители, которые управляются электромагнитами.

Гидравлический распределитель: устройство, принцип работы, типы - фото 19 - изображение 19

Устройство и принцип работы

Гидрораспределители могут применяться при работе с различными типами жидкостей. Но чаще всего такой механизм можно встретить в гидравлических системах, для регулировки потока, уровня и давления масла.

Схема гидрораспределителя зависит от типа механизма и целей его использования. Чаще всего он состоит из корпуса, распределительных каналов, клапанов различных видов, регулировочных механизмов, фиксаторов, в некоторых случаях электромагнитов и других деталей.

Принцип работы электрораспределителя такой:

  1. На корпусе установлен электромагнит постоянного тока, который при включении воздействует на палец и толкатель, к которому крепится с помощью рычага.
  2. Толкатель воздействует на шариковый клапан, прижимая его к седлу;
  3. Такое положение позволяет гидродвигателю включиться в работу, вытесняя жидкость из рабочей емкости в сливную магистраль.
  4. Когда на электромагнит не поступает электричество, шариковый клапан прижимается к седлу.
  5. Из-за этого с рабочей емкостью соединяется с нагнетательной полостью, что приводит к обратному движению жидкости, которая возвращается в полость двигателя.
  6. Рабочая емкость закрывается обратным клапаном, который не позволяет жидкости двигаться в системе.
  7. Для работы распределителя не требуется большой мощности, так как вся система уравновешена. Усилие пружины, которая воздействует на шариковый клапан, примерно равняется давлению со стороны толкателя, в полость которого нагнетается рабочая жидкость. Из-за этого даже малейшего усилия электромагнита достаточно для изменения направления и распределения потоков жидкости.

Устройство и принцип работы - изображение 20 - изображение 20

Типы гидрораспределителей - фото 21 - изображение 21

Практически все модели распределителей работают по одному принципу. Отличия могут быть незначительные и зависят от конструкционных особенностей.

Типы гидрораспределителей

На сегодняшний день существует несколько классификаций гидрораспределителей. Наиболее распространенная выделяет три типа – золотниковые, крановые и клапанные, отличие которых заключается в разной схеме запорно-регулирующего элемента.

Но также стоит выделить несколько других принципов классификации:

  1. В зависимости от числа внешних гидролиний:
  • двухлинейные;
  • трехлинейные.
  1. Зависимо от числа позиций запорного механизма – двух- и трехпозиционные;
  2. Исходя из вида управления бывают:
  • с ручным управлением;
  • с электрическим;
  • с механическим;
  • с гидравлическим.
  1. Зависимо от количества запорных элементов бывают одно- и двухступенчатые.

Золотниковые

Один из наиболее популярных типов. Устройство золотникового распределителя простое, его отличие от остальных заключается в особом строении распределителя. В его качестве выступает цилиндрический золотник. Его движение провоцирует изменение направления жидкости. В спокойном положении он перекрывает каналы, но при смещении влево или вправо, происходит движение жидкости из рабочей полости, под давлением от насоса, или обратно в полость.

Такой тип распределителя обычно применяется для поршневых систем. Движение золотника провоцирует выдвижение поршня и его обратное втягивание. Среди золотниковых распределителей можно выделить двухходовые, трехходовые и многоходовые.

Управляться такой распределитель может вручную, гидравликой, электромагнитом или смешанной системой управления (электрогидравлической). Ручное управление применяется в простых механизмах и может выполняться с помощью рычага, педали, кнопки, рукоятки или другого простого привода. Механическое управление более сложное, в нем участвует пружина, толкатель или ролик.

Область применения - изображение 22 - изображение 22

В зависимости от сложности конструкции и целей использования, механизм может иметь несколько золотников. Исходя из этого распределители делят на секционные и моноблочные. Секционные обычно соединяются между собой с помощью болтов. Для моделей такого типа разработано несколько запорно-регулирующего механизма:

  1. С положительным осевым перекрытием – позволяет фиксировать поршень в нужном положении, но точность фиксации небольшая из-за наличия области нечувствительности.
  2. С нулевым перекрытием – более совершенный тип, которой не имеет подобной области, но отличается довольно высокой стоимостью, связанной со сложным процессом производства.
  3. С минимальным – имеет небольшую зону нечувствительности, приемлемую стоимость, но надежность конструкции ниже из-за меньшей жесткости.

Крановые

В основу этой модели заложена крановая пробка. С ее помощью происходит распределение потоков, путем поворота пробки. Чаще всего такие изделия имеют коническую форму, или форму цилиндра, но также можно встретить плоские и сферические модели. Чтобы подобный механизм работал эффективно, должна соблюдаться герметичность. За этим обязательно нужно следить, так как во время эксплуатации вследствие износа между пробкой и корпусом может увеличиться зазор. Из-за этого герметичность теряется и происходит утечка жидкости.

Гидравлическая машина - что это такое, область применения, классификация. - изображение 23 - изображение 23

Чаще всего проблемы с герметичностью возникают в моделях с цилиндрической пробкой. Чтобы механизм работал исправно, зазор не должен превышать 0,02 мм. Со временем зазор увеличиваются и происходит утечка жидкости. При этом в некоторых случаях, несмотря на потери, можно продолжать эксплуатацию распределителя. К сожалению, избавиться от утечки можно только с помощью покупки нового устройства. Поэтому все более популярными становятся модели гидравлических распределителей с конической пробкой, в которых проблема с герметичностью отсутствует.

Клапанные

В основе конструкции таких распределителей лежит клапан, который более надежен, чем золотник, и позволяет работать при высоком давлении жидкости. Обычно клапанные распределители способны работать при давлении в три раза превышающим возможности золотниковых. Надежность работы достигается путем использования нескольких проходных клапанов, которые поочередно открываются и закрываются.

Закрытия и открытия клапанов происходит за счет движения стержня, на котором установлены выступы. В зависимости от направления стержня, открывается нужная пара клапанов и жидкость сливается в рабочую емкость или гидродвигатель.

При производстве распределителей могут использоваться клапаны различной формы. Чаще всего применяются конусы и шарики.

Управление подобными распределителями может выполняться вручную, механическим или электрическим способом.

Классификация гидравлических машин - изображение 24 - изображение 24

К недостаткам таких моделей можно отнести большие габариты. Это связанно с необходимостью обеспечения высокой надежности. При этом пропускная возможность клапанных распределителей может равняться показателям золотниковых, размером практически в два раза меньше. На срок эксплуатации такого распределителя может негативно повлиять гидравлический удар, возникающий во время посадки клапана на седло.

Область применения

Область применения гидрораспределителей не ограничивается отдельными сферами деятельности. Практически в каждой гидравлической системе используется такой механизм. Наиболее распространенными являются золотниковые модели. Это связано с тем, что они простые в использовании, относительно дешевые и имеют небольшие размеры. С помощью таких распределителей обычно происходит управление движением компонентов двигателей.

Обычно встретить такие гидравлические распределители можно на:

  • станках:
  • крановых установках, подъемниках и манипуляторах;
  • грузовых автомобилях;
  • сельскохозяйственной технике;
  • специальной технике, применяемой в строительстве и горнодобывающей промышленности.

Сфера применения таких моделей ограничивается лишь уровнем давления рабочей жидкости. При превышении дозволенных показателей система может не выдержать и выйти из строя из-за потери жидкости. При больших нагрузках стоит отдавать предпочтение клапанным устройствам.

Крановые модели редко применяются из-за небольшой пропускной способности. Они часто встречаются в комплексе с золотниковыми и клапанными устройствами в качестве дополнительного механизма.

При покупке распределителя следует изучить технические характеристики каждой модели. Иногда лучше всего посоветоваться со специалистом. От распределителя напрямую зависит надежность работы гидросистемы. Стоит отметить, что даже если правильно подобрать устройство, могут возникнуть проблемы, если неправильно его установить. Поэтому к такому важному этапу также стоит отнестись с особым вниманием.

Гидравлическая машина - что это такое, область применения, классификация.

Принцип работы и устройство гидромашин - фотография 25 - изображение 25

Гидравлическая машина – это специальное оборудование, в котором подаваемая из насоса жидкость передаёт свою механическую энергию турбинам (так называемые гидродвигатели). Есть другой вариант – это машина, которая придаёт протекающей через неё жидкости механическую энергию (проще говоря – насос).

Гидравлическая машина, берущая энергию из протекающей воды, состоит из:

  • электро-генератор;
  • турбина;
  • подающий аппарат или специальные каналы.

Насос является одним из самых распространённых агрегатов. Они применяются в сельском хозяйстве, строительстве, химической, металлообрабатывающей, текстильной и пищевой промышленностях.

Гидравлическими машинами называют агрегаты, которые могут перемещать различные виды жидкостей и газов, а также, вырабатывать энергию от текущей жидкости (гидродвигатели). Именно создание и перемещение потока жидкостей и есть главное назначение гидравлических машин.

Классификация гидравлических машин

Гидравлические машины классифицируют по принципу действия и внутреннему строению.

Главное разделение – насосы и гидравлические двигатели.

К насосам относятся такие группы:

  1. Объёмные – это агрегаты, рабочий процесс которых, происходит переменно. В рабочую ёмкость через входную трубу попадает жидкость. После заполнения камеры, входная труба перекрывается задвижкой и в камере нагнетается давление (поршень). Открывается выводящая труба и жидкость покидает ёмкость. Задвижка закрывается, а на входе наоборот открывается. Процесс повторяется
  2. Динамические – в этих агрегатах, рабочая часть насоса, взаимодействует с жидкостью в проточной части. Потоку придаётся дополнительная кинетическая энергия, за счёт лопастей, винтов или вихревого потока.

Гидравлические двигатели разделяются на:

  1. Активные – в этом случае, поток распределяется по нескольким каналам, через которые он с большой скоростью ударяет в определённые лопасти турбины.
  2. Реактивные – это агрегат, в котором колесо вырабатывающее энергию, находится в ёмкости с большим давление под водой.

Однако у гидравлических двигателей, большинство моделей можно использовать как насос. Следовательно, они могут разделяться на объёмные и динамические.

Принцип работы и устройство гидромашин

С развитием технологий, появляется все больше новых машин, используемых в различных отраслях промышленности.

Лопастные насосы

Этот тип гидромашин, получил огромное распространение в обеспечение населения водой. Эти насосы можно разделить на осевые и центробежные.

Если говорить о принципе действия центробежного насоса, то в этом случае жидкость будет двигаться от центра колеса к периферии под воздействием центробежных сил.

Из каких элементов состоит: основное колесо (рабочее) на котором располагаются лопасти, подвод воды и отвод, а также двигатель. Колесо состоит из двух круглых пластин, между которыми располагаются изогнутые лопасти и подвижная ось двигателя. Колесо вращается в противоположную сторону изгиба лопаток. Тем самым, двигатель с помощью него передаёт потоку механическую энергию.

Осевой насос подразумевает движение жидкости только вдоль подвижной оси, на которой могут располагаться несколько рабочих колёс с лопастями. Они расположены так, чтобы вода поднималась вокруг оси до нужно отметки. В некоторых моделях таких насосов, можно регулировать положение лопастей.

Поршневой насос

Принцип работы заключается в вытеснение жидкости находящийся в рабочей камере, с помощью подвижных элементов насоса. Рабочая камера представляет собой емкость, в которой есть вход и выход для жидкости. Подвижные элементы бывают трёх видов: диафрагма, плунжер и поршень.

Устройство поршневого насоса: шатун, кривошип, поршень, цилиндр (корпус в котором двигается вытесняющая поверхность), пружинные клапаны (впускной и выпускной), ёмкость для жидкости.

Именно поршневые модели являются самыми распространёнными из вытеснителей. В них может присутствовать один, два или несколько поршней.

Плунжерные варианты используются реже вследствие своей дороговизны (это связанно с высокой точностью изготовления движущихся элементов). Однако их преимуществом перед поршневыми, является возможность получения высокого давления.

Состоит плунжерный насос из: ведущий вал, кулачок, плунжер, корпус (цилиндр), пружина (плунжер двигается вперёд с помощью кулачка, а обратно под воздействием пружины).

Самый постой в изготовление, вследствие этого дешёвый вариант – Диафрагменный насос. Из-за простой конструкции, этот вариант не подходит для создания большого давления. Прочность диафрагмы не предназначена для высоких нагрузок. Он состоит из: шток, гибкая диафрагма, корпус, два клапана (впускной и выпускной).

Шестерные насосы

Это машины роторного типа. Они получили большую популярность среди нерегулируемых насосов. Такой агрегат состоит из: две одинаковые шестерни (зацепленные друг за друга), камера п-образной формы (в ней и находятся шестерни), разделитель.

Принцип работы: после запуска двигателя, из всасывающего отверстия, вода попадает в зону между зубьями. Дальнейшее вращение шестерней, приводит к передвижению жидкости в нагнетательную плоскость. В месте зацепления шестерен, жидкость вытесняется и под воздействием давления попадает к дальнейшим рабочим частям насоса.

Преимущества таких гидромашин:

  • простая конструкция;
  • низкая стоимость;
  • высокий показатель надёжности;
  • высокая частота вращения.

Недостатки:

  • фиксированный рабочий объём, без возможности регулирования;
  • конструкция не предназначена для работы с высоким давлением;
  • неравномерная подача жидкости, если брать в пример пластинчатые гидромашины.

Пластинчатые гидромашины

Это не то же самое, что и лопастные машины (динамический вид). Рабочими поверхностями здесь являются шиберы (пластины). Они относятся к объёмному виду. Подвижным элементом является ротор. Он совершает вращательные движения. А шиберы двигаются по возвратно-поступательной траектории внутри ротора.

Пластинчатые гидромашины подразделяются на две группы: однократные и двукратные. Первый вариант может быть регулируемым, второй нерегулируемый.

Состоят такие агрегаты из: шиберы с пружинами (от двух и более), рабочие камеры (условно разделяются пластинами), ротор.

Рабочий процесс: после запуска двигателя, ротор начинает движение. Шиберы под воздействием пружин, плотно соприкасаются со стенками статора и разделяют общую рабочую емкость на две герметичные камеры (если пластине две). Под воздействием всасывания, емкости заполняются жидкостью и в ходе вращения, передают её в выходное отверстие.

Преимущества пластинчатых гидромашин:

  • тихий рабочей процесс;
  • возможность регулировки агрегатов однократного действия.

Недостатки:

  • сложная конструкция;
  • создание низкого давления при работе;
  • нарушение качества работы при низких температурах.

Поворотный гидродвигатель

Особенностью таких агрегатов, является ограничение угла рабочего вала. Они широко применяются в создание рулевого управления сельскохозяйственных машин. Угол оборота, напрямую зависит от количества пластин. Если она одна, он будет составлять примерно 270 градусов, если две – 150, три – 70.

Чтобы регулировать работу вала, потребуется специальный гидрораспределитель. Этот вид агрегатов не подходит для работы с большим давлением жидкости.

Гидротурбины

В этих гидромашинах, механическая энергия протекающей жидкости, передаётся лопастям рабочего колеса. Самый масштабный и яркий пример использования гидротурбин, это гидроэлектростанции. Они разделяются на реактивные и активные.

Состоит такой агрегат из: рабочее колесо, подводящий аппарат или сопла (зависит от типа турбины).

По внутреннему строению их можно разделить на ковшовые, диагональные, осевые и радиально-осевые.

Предшественником гидротурбин, можно назвать водяное колесо, которое приводилось в движение с помощью мощного потока воды (их устанавливали на реках или больших ручьях).

Осевые турбины

Самые быстроходные из всех видов турбин. Рабочее колесо по форме напоминает вентилятор с большими лопастями, которые могут быть как фиксированными, так и подвижными. В таких турбинах обязательно устанавливается подающий аппарат. Он отвечает за КПД агрегата, а также в нужным момент полностью перекрывает подступ воды к лопастям. Также обязательным элементом, являются трубы для откачивания воды.

Поворотно-лопастные турбины

Осевой вид турбины, с изменяющими своё положение лопастями. Всего их в такой конструкции может быть 8 штук. Сама конструкция напоминает гребной винт. Изменение положения лопастей, даёт возможность сохранять высокий показатель КПД при уменьшении и незначительном увеличение силы напора. Если лопасти зафиксированы, этот вид будет называться пропеллерным. Он самый дешёвый и самый ограниченный в возможностях (может работать только в одной силе потока).

Самым редким вариантом поворотно-лопастных турбин, являются двухперовые. Их главное отличие от других видов, это разделение лопасти на два пера. Такие модели активно используют за границей.

Радиально-осевые турбины

Это самый старый и самый популярный вид. Его главной особенностью является простота конструкции и невысокая цена. На самых больших гидроэлектростанциях, установлены именно такие гидротурбины. Им принадлежит рекорд по выдаваемой мощности.

В этом виде турбин, жидкость поступает на рабочее колесо с наружной стороны. Проходя по радиусу, минуя множество каналов определённой формы, она достигает центра и заставляет ротор раскручиваться. Для того, чтобы жидкость поступала равномерно и правильно, колесо окружается спиральной камерой, за которой находится направляющий аппарат. Его лопасти располагаются под определёнными углами, для увеличения КПД турбины. Когда вода отдала свою механическую энергию рабочему колесу, она откачивается с помощью специальных труб.

Главным минусом этого вида турбин, являются фиксированные лопасти. Тем самым, радиально-осевая турбина может показать высокой значение КПД, только при определённых напорах. Если использовать Радиально-осевую турбину при напоре в 700 м, её размер должен быть огромен, вследствие чего, она сильно проигрывает ковшовым турбинам. Максимально допустимой силой напора, для достижения высокого показателя КПД, будет отметка в 300м.

Диагональные турбины

Этот вид вобрал в себя лучшие качества двух предыдущих. Диагональные турбины, являются новой разработкой, по сравнению с другими. Главной особенностью этого вида, является гол наклона лопастей (30-60 градусов). И в это же время, лопасти можно регулировать. Вследствие этого, диагональные турбины подходят для обширного диапазона мощностей потока, сохраняя высокий показатель КПД.

Однако такая универсальность и производительность дорого обходится. Это связанно со сложностью конструкции.

Есть диагональные турбины с фиксированными лопастями. Они распространены на небольших ГЭС.

Ковшовые гидротурбины

Этот вид предназначен для работы с большими напорами. Ковшовые турбины относятся к активному типу в отличие от остальных. Рабочее колесо приводится в действие отдельными струями воды, попадающими на ковши колеса. Сами струи формируются с помощью направленных отверстий или сопл. Их может быть до шести штук. Рабочее колесо состоит из диска, с закреплёнными на нём ковшами.

Ковшовые гидротурбины разделяются на вертикальные и горизонтальные. Второй вариант используется на средних гидроэлектростанциях.

Где используется

Если говорить про простые варианты гидромашин (в которых давление передаётся при помощи жидкости), они используются в таких приспособлениях как домкраты, прессы, подъёмники. Следовательно, гидромашины используются в строительстве и машиностроение. Это так называемые гидроприводы, которые используются в различных подвижных частях строительных машин (ковши, буры, манипуляторы).

Если сравнить гидропривод с его механическим аналогом, у первого можно выделить такие преимущества:

  1. Высокая мощность передаваемая на одну единицу веса элемента.
  2. Скорость работы. Запуск, реверс и полная остановка выигрывают в скорости выполнения у механических и электрических приводов.
  3. Надёжное предохранение от перегрузов всей системы.
  4. Возможность установить на гидропривод любое оборудование (ковш, дисковая пила, отбойный молоток и многое другое).

Однако когда речь идёт об использование гидропривода на больших расстояниях, он сильно уступает аналогам в КПД.

Насосы применяются в соответствие с их конструкциями. Центробежные насосы получили своё распространение в работе теплоэлектростанций, системах очистки сточных вод, химической и пищевой промышленности. Также они используются для перемещения сжиженных газов, реагентов и нефтепродуктов.

Возвратно-поступательные насосы, являются самым старейшим видом. Ещё в древности они получили своё распространение в водоснабжение. Сейчас они используются в тех же целях, плюс для перекачки взрывоопасных жидкостей, пищевой промышленности (перемещение молочной продукции внутри заводов), а также в системах подачи топлива для ДВС.

Шестерные насосы могут работать только с невысоким уровнем давления. Их используют в сельскохозяйственной промышленности, коммунальных отраслях, перекачке различных видов топлива (бензин, нефть, дизель, различные добавки и присадки, мазут). В химической промышленности их применяют для перемещения кислот, спиртов, растворителей и щелочей.

В последние годы, гидравлические машины получили широкое распространение в создание тренажёров для занятий спортом.

Гидротурбины используются на ГЭС. Однако только в соответствие с силой напора:

Виды гидротурбин Максимальная сила напора Н, м Максимальная мощность кВт Максимальный диаметр турбины м
Реактивные:
Осевые трубчатые или капсюльные 20 50 8
Вертикальные поворотно-лопастные 80 250 10,5
Пропеллерные  80 150 9
Радиально-осевые 700 800 10
Двухперовые 100 250 8
Диагональные 200 300 8
Обратимые:
Радиально-осевые одноступенчатые 600 450 9,5
Осевые 15 30 8
Диагональные 100 300 7,5
Активные:
Сфиндекс 1500
Ковшовые 2000 350 7,5
Двукратные 100
Наклонно-струйные 400 50 4

о гидравлических насосах

Где используется - изображение 26 - изображение 26

Пишет LenBogd в своём блоге.

Гидравлические насосы отличаются простой конструкцией и отличными эксплуатационными характеристиками. В процессе работы устройства преобразуют механическую энергию вращения в гидравлическую. Принцип работы основан на системе "поршень-поршень", когда двигатель насоса генерирует крутящий момент, образуется давление, которое приводит в действие поршень. Корпус всех гидронасосов содержит две изолированные камеры: нагнетающую и всасывающую. Во время работы между камерами движется жидкость. Такая замкнутая система отличается высокой производительностью, износоустойчивостью, ремонтопригодностью.

Сфера применения и основные параметры

Современные гидравлические насосы оснащаются насадками, значительно расширяющими функциональные возможности даже самых простых моделей. Устройства могут эксплуатироваться как самостоятельные агрегаты, так и включаться в состав сложных гидроприводов и узлов. Гидронасосы применяются во многих сегментах промышленности: нефтегазовой, лесоперерабатывающей, химической. Также оборудование является конструктивным элементов автокранов, грузовых и дорожных машин, электроподвижного состава. Некоторые модели используются в строительстве, машиностроении, ЖКХ.

Главные технические параметры гидронасосов :

1. Рабочий объем (см.куб/об).2. Частота вращения (оборот./мин).3. Допустимое рабочее давление (Мпа).4. Объем рабочих камер (см.куб).5. Допустимый уровень вязкости рабочей жидкости (Па•сек).6. Размеры и масса.

При выборе гидронасоса большое значение имеет тип его конструкции, который подбирается, исходя из предполагаемых условий эксплуатации.

Шестеренный насос

Гидравлические шестеренные насосы – это роторные гидромеханизмы, используемые в системах с давлением не более 20 МПа. Главным рабочим органом этих гидронасосов являются шестерни. Существует два вида устройств:

1. Насосы внешнего зацепления

Принцип работы гидронасосов внешнего зацепления следующий: шестерни вращаются и жидкость, которая попадает во впадины зубьев, движется от всасывающего к выходному патрубку. При этом зубья шестерен вытесняют больше жидкости, чем умещается в пространстве, образующемся зацепляющимися зубьями. Разность объемов выталкиваемой жидкости образует зону "запертого" объема, что приводит к нагнетанию гидростатического давления. Шестерни большинства насосов имеют классическую форму прямоугольного зубца, реже встречаются устройства с косыми или шевронными зубцами.

Преимущества:

— простая конструкция и ремонтопригодность;— частота вращения до 5 тыс. оборотов/мин.;— доступная стоимость владения и обслуживания.

Недостатки:

— невысокий КПД, в сравнении с другими типами насосов;— возникновение пульсации.

2. Насосы внутреннего зацепления

Принцип работы шестеренного гидронасоса с внутренним зацеплением также основан на переносе жидкости в заглублениях шестерен. Отличительная особенность данного конструктивного решения — меньший уровень пульсаций и сниженный уровень шума. Насосы такой конструкции используются в закрытых помещениях.

Преимущества:

— частота вращения до 4 тыс. оборотов/мин.;— минимальный уровень шума, вибрации;— демократичная стоимость и простое ТО.

Недостатки:

— относительно невысокий КПД.

Пластинчатый насос

В гидронасосах пластинчатой конструкции в качестве выталкивателя рабочей жидкости используются пластины. Элементы расположены радиально и в процессе работы насосного оборудования производят возвратно-поступательные движения. Такой тип гидронасосов часто называют шиберными. Оборудование отличается низким уровнем шума и равномерностью подачи. Оптимальное рабочее давление для пластинчатых насосов — 20-22 Мпа. Некоторые модификации могут применяться при давлении до 30 МПа.

Основными рабочими частями пластинчатого насоса являются: кольцо, плоский распределитель с входными/выходными отверстиями, ротор и пластины. У гидронасосов однократного действия может меняться рабочий объем посредством изменения значения эксцентриситета. Устройства двойного действия имеют по две зоны всасывания и нагнетания.

Принцип работы гидравлического пластинчатого насоса: источник движения соединен с валом, приводимым в действие ротором, в котором располагаются рабочие пластины. При вращении ротора образуется центробежная сила, которая действует на пластины. Под действием силы пластины движутся по неподвижному кольцу, создавая принудительное уплотнение. Центр ротора смещен в плоскости от центра кольца, за счет чего объемы кольца циклично изменяются.

Преимущества:

— бесшумная работа и отсутствие вибрации;— возможность регулирования рабочего объема (в моделях однократного действия);— низкие требования к чистоте жидкостей;— длительный эксплуатационный ресурс;— доступная стоимость.

Недостатки:

— сложный ремонт, многие элементы при выходе из строя требуют полной замены узла.

Поршневой насос

В поршневых гидронасосах жидкость перекачивается при помощи возвратно-поступательных движений поршневых механизмов в камерах. Поршневые агрегаты повсеместно применяются в разных отраслях для обеспечения гидроэнергией двигателей и вспомогательных механизмов. Часто этот тип гидронасосов используется в качестве резервного источника гидравлической энергии. Устройства работают при давлении до 50 МПа.

Стандартные элементы поршневого насоса: плоский распределитель, поршни с подпятниками, цилиндрический блок, наклонный диск, прижимная шайба, оснащенная пружиной. Наклонный диск располагается под углом к ротору и поршню с подпятником.

Принцип работы поршневого гидронасоса: при вращении ротора осуществляется фиксация подпятником наклонного диска, который остается без движения. Поршень начинает возвратно-поступательные колебания, создавая положительный объем. В следующем цикле объем значительно уменьшается, создается давление. Для разделения входящих и выходящих потоков рабочей жидкости служит плоский разделитель.

Различают несколько конструктивных видов поршневых гидравлических насосов: аксиально-поршневой, с объемным регулированием и радиально-поршневой. Каждый тип имеет свои особенности, рабочие характеристики.

Аксиально-поршневой насос

Насосы аксиально-поршневой конструкции являются самыми востребованными в промышленности. Особенность данного типа оборудования заключается в следующем: к ротору присоединен вал, который располагается со стороны наклонного диска (реже — с противоположной стороны). В центре наклонного диска находятся отверстия для вала. В таком насосе поршни движутся вокруг одной оси с рабочим валом. В качестве вытеснителя жидкости в некоторых моделях используются не поршни, а плунжеры.

Аксиально-поршневые агрегаты имеют оптимально весогабаритные характеристики относительно КПД. Насосы способны выдавать давление до 40 МПа и работать длительное время с высокими частотами вращения — до 4 тыс. оборотов/мин. Разработаны и успешно применяются гидронасосы этого типа с частотой вращения до 20 тыс. оборотов/мин.

Преимущества:

— простота конструкции, ремонтопригодность;— работа на высоком давлении;— высокий КПД;— оптимальное соотношение мощности и производительности.

Недостатки:

— более высокая цена по сравнению с другими гидронасосами.

Разновидностью аксиально-поршневых гидронасосов являются регулируемые насосные агрегаты.

Аксиально-поршневой насос с объемным регулированием

Устройство применяется, когда требуется переменная подача. Регулировка производится посредством изменения частоты вращения ротора или рабочего объема. Первый вариант является экономически невыгодным, поэтому распространение получил второй вариант. В устройствах такого типа количество жидкости зависит от положения статорного кольца в пластинчатых агрегатах или наклонного диска — в поршневых.

Конструктивные элементы аксиально-поршневого насоса с изменяемой подачей: ротор, плоский распределитель, наклонный регулируемый диск, регулирующий поршень, прижимная шайба, рабочие поршни с подпятниками, регулятор объема, компенсатор, жиклер, сервоклапан, пружины.

Принцип работы аксиально-поршневого гидронасоса с объемным регулированием: стержень с резьбой ограничивает поворотный угол наклонного диска. При достижении крайнего положения ограничителя пружина двигает наклонный диск на максимально возможный угол. В это же время под действием движения ротора выполняется прижимание поршневых подпятников к поверхности диска. Возникают возвратно-поступательные движения поршневой группы, при этом первая половина поршней внутри ротора выдвигаются, создавая увеличенный объем. В результате этого жидкость заполняет рабочий объем через входное отверстие. Вторая половина поршней входят в ротор, создавая уменьшенный объем, а рабочая жидкость выходит через выходное отверстие.

При уменьшении угла поворота диска ход поршней будет сокращаться, и количество рабочей жидкости уменьшится. Наибольший объем достигается при повороте диска на максимально возможный угол.

Достоинства:

— компактные размеры в сочетании с внушительной мощностью;— минимальный момент инерции;— простая регулировка направления, давления;— частота вращения до 4 тыс. оборотов/мин.;— оптимальное давление до -40 МПа;— высокий КПД — до 97%.

Недостатки:

— высокая стоимость в сравнении с нерегулируемыми гидронасосами;— требуют точной настройки.

Радиально-поршневой насос

Оборудование этого типа имеет клапанное распределение. В процессе движения вала поршни выходят из цилиндров и наполняются жидкостью, поступающей через всасывающие клапаны. Гидронасосы радиально-поршневые редко применяются в качестве помпы. В основном они входят в состав гидравлических моторов и систем с давлением более 40 МПа. Устройства способны длительное время эксплуатироваться, выдавая рабочее давление 100 МПа. Большинство моделей радиально-поршневых гидронасосов относится к тихоходным. Частота вращения, как правило, составляет 1,2-2 тыс. оборотов/мин. Модификации с малым рабочим объемом могут развивать частоту до 3 тыс. оборотов/мин.

Радиально-поршневое насосное оборудование выпускается в двух вариациях: с эксцентричным ротором или валом. В первом случае рабочая поршневая группа располагается на роторе. При этом ось вращения неподвижного статора смещена для создания поступательных движений поршней. Распределение жидкости выполняется золотником.

Достоинства:

— высочайшая надежность, редкие поломки;— компактные размеры;— большой диапазон рабочего давления.

Недостатки:

— наличие пульсации;— большой вес при малых габаритах.

Аксиально-поршневой насос с наклонным блоком

Конструкция аксиально-поршневого гидронасоса оснащенного наклонным блоком имеет несколько особенностей. В процессе работы совместно с валом вращаются цилиндры, а поршни движутся поступательно. Цилиндры прилегают к распределителю с двумя пазами. При движении поршня цилиндр перемещается над всасывающим пазом, при этом заполняясь жидкостью. При прохождении нижней точки, когда поршень максимально выдвинут, происходит соединение цилиндра со вторым пазом и жидкость выталкивается под давлением. В качестве распределителя применяется стандартный золотник.

Еще одна особенность данных гидронасосов — наличие дренажной линии. Она необходима для стабилизации растущего давления по причине утечки рабочей жидкости из цилиндра в процессе нагнетания. При нарушении дренажной линии корпус устройства через некоторое время разрушится.

Для нормальной работы гидронасоса с наклонным блоком необходима синхронизация вала с цилиндрами. Синхронизация может выполняться силовым или несиловым карданом, поршневыми шатунами или зубчатым сцеплением.

Достоинства:

— эксплуатация на давлении до 60 МПа;— высокий КПД;— оптимальная мощность.

Недостатки:

— необходимость синхронизации;— сложность ТО.

Критерии выбора гидронасоса

При выборе гидравлического насоса необходимо учитывать условия работы гидросистемы. Подбирая насос и тип его конструкции важно обращать внимание на уровень давления, характеристики жидкости, КПД и пр.

Гидравлическая навесная система

о гидравлических насосах - изображение 27 - изображение 27

Гидравлическая навесная система служит для соединения навесных машин и орудий с трактором, а также перевода их в рабочее и транспортное положение. Она состоит из навесного устройства и гидравлического привода (системы).

Трактор, гидравлическая навесная система и машина образуют навесной агрегат. Навесные агрегаты обладают существенными преимуществами перед прицепными:

  • хорошая маневренность
  • более высокая производительность
  • меньший расход топлива на единицу выполненной работы
  • относительно малая металлоемкость навесных машин
  • на некоторых видах работ не нужен вспомогательный обслуживающий персонал

В состав гидравлической навесной системы входят:

  • масляный насос
  • распределитель
  • гидроцилиндры
  • бак для масла
  • запорные и разрывные устройства и маслопроводы
  • механизм навески
  • в тракторах МТЗ-80 и МТЗ-82 — дополнительно гидроувеличитель сцепного веса (ГСВ) и регулятор глубины обработки почвы

На рисунке изображена схема действия гидравлической навесной системы (ГСВ и регулятор глубины обработки почвы условно к гидросистеме не подключены). Масляный насос 1 (рисунок а) из бака 2 нагнетает масло в распределитель 3. Золотник 4 распределителя с помощью рукоятки 5 можно устанавливать в четыре положения: подъем (П), нейтральное (Н), опускание (О) и плавающее (Пл). Когда золотник занимает положение П (показано на рисунке б), масло из распределителя нагнетается по маслопроводу в полость Б гидроцилиндра 6 и перемещает в нем поршень в сторону полости А. При этом шток поршня через механизм навески 8 поднимает орудие 9. В то же время из полости А масло вытесняется поршнем и отводится через распределитель в бак. Условно путь масла в распределителе показан на рисунке б.

Гидравлическая навесная система - фотография 28 - изображение 28

Рисунок. Схема гидравлической навесной системы тракторов МТЗ-80 и МТЗ-82 (а) и пути масла в гидросистеме (б): 1 — насос; 2 — масляный бак; 3 — распределитель; 4 — золотник распределителя; 5 — рукоятка золотника; 6 — гидроцилиндр (основной); 7 — маслопроводы; 8 — механизм навески; 9 — навесное орудие; 10 — опорное колесо орудия.

Когда рукоятка поставлена в положение Н, золотник запирает отверстия, ведущие в маслопроводы основного гидроцилиндра, поэтому поршень в нем неподвижен и орудие остается в установленном положении, а масляный насос, работая вхолостую, перекачивает масло через распределитель в бак. При установке рукоятки в положение принудительного опускания насос подает масло в полость А гидроцилиндра, орудие опускается поршнем, а масло вытесняется им из полости Б в бак. Если рукоятку установить в плавающее положение, золотник расположится так, что масло будет перетекать через распределитель из одной полости гидроцилиндра в другую. Это позволит орудию подниматься и опускаться, копируя опорным колесом поверхность почвы. Насос будет работать вхолостую, как при нейтральном положении.

Рассмотрим устройство и действие отдельных узлов гидравлической системы на примере гидросистемы трактора МТЗ-80 и его модификаций. В гидравлическую систему входят шестеренный насос НШ-32-2 (НШ — насос шестеренный, цифры — теоретическая подача жидкости в см на один оборот вала привода насоса), основной Ц-100 и два выносных Ц-75 цилиндра (Ц — цилиндр, цифры — внутренний диаметр корпуса в миллиметрах), распределитель Р75-33-Р, силовой (позиционный) регулятор, гидравлический увеличитель сцепного веса (ГСВ), гидроаккумулятор, корпус гидроагрегатов с фильтром и шланги высокого давления с запорным устройством.

Устройство ручного гидравлического насоса и принцип его работы - изображение 29 - изображение 29

Рисунок. Схема гидросистемы трактора: 1 — насос; 2 — всасывающий патрубок; 3 — нагнетательный маслопровод; 4 — бак; 5 — промежуточный маслопровод; 6 — распределитель; 7 — фильтр; 8 — предохранительный клапан фильтра; 9 — сливной маслопровод; 10 — гидроувеличитель (ГСВ); 11 — маслопровод основного цилиндра (правый); 12, 35 — боковые выводы; 13 — силовой регулятор; 14 — запорное устройство; 15 — кронштейн; 16 — рукав высокого давления; 17 — главный цилиндр; 18 — замедлительный клапан; 19 — рычаг поворотного вала; 20 — короткий рычаг; 21 — кронштейн навески; 22 — болт; 23 — пружина; 24 — пластинчатая пружина; 25 — пружинный аккумулятор; 26 — тяга силового регулирования; 27 — тяга позиционного регулирования; 28 — муфта; 29 — рычаг позиционного регулирования; 30 — гайка; 31 — рычаг силового регулирования канала управления; 32 — переключатель; 33 — маслопровод; 34 — задний вывод

Насос 1 через всасывающий патрубок 2 забирает масло из бака и под давлением более 10 МПа подает по маслопроводу к распределителю 6 и силовому регулятору 13. Распределитель регулирует направление потока масла. Он направляет масло либо в бак по сливному маслопроводу, пропуская его через фильтр, либо по промежуточному маслопроводу в ГСВ. Далее по маслопроводу масло поступает в силовой регулятор и по рукаву высокого давления в гидроцилиндр или через боковые выводы непосредственно к гидроприводу сельскохозяйственных машин.

Неподвижно закрепленные на тракторе устройства гидросистемы соединяют стальными бесшовными трубопроводами, рассчитанными на давление до 32 МПа, а к гидроцилиндрам жидкость подводится по гибким шлангам. Маслопроводы соединяют с помощью специальных муфт, снабженных самозапирающимися устройствами шарового типа.

Регулятор глубины обработки почвы работает следующим образом.

Верхняя центральная тяга навесного устройства соединена с корпусом заднего моста трактора не жестко, как обычно, а болтом через пластинчатую пружину. При заглублении машины, например плуга, сверх нормы увеличивается давление на пружину, в результате чего ее длина уменьшается, а поводок через тягу и рычаг силового регулирования перемещает золотник силового регулятора вверх, в результате чего масло направляется в гидроцилиндр и плуг выглубляется.

Как только глубина обработки почвы достигнет заданной величины, уменьшится воздействие на пружину, она удлинится, возвратит золотник регулятора в исходное положение и подача масла в цилиндр прекратится. Включение (и выключение) регулятора в систему осуществляется рычагом переключателя.

Если навешенные на трактор машина или орудие удерживаются во время работы в заданном положении (позиции) относительно остова трактора независимо от тягового сопротивления, например при посеве на поле с ровным рельефом, то золотник регулятора соединяется через тягу с поворотным рычагом, посредством которого шток гидроцилиндра соединен с навесным устройством. При перемещении рычага сигнал через тягу передается на золотник силового регулятора, который для подъема или опускания рабочей машины направляет масло в гидроцилиндр.

Догружатель ведущих колес бывает двух типов:

  • механический, когда сцепной вес увеличивают за счет веса агрегатируемой машины, перенося переднюю точку присоединения центральной тяги (чем ниже точки присоединения тяги, тем больше сцепной вес)
  • гидравлический (ГСВ)

Гидравлический догружатель или увеличитель сцепного веса расположен на стенке корпуса гидроагрегатов справа от распределителя. Работает он следующим образом. При недостаточном сцепном весе тракторного агрегата (ведущие колеса начинают пробуксовывать) с помощью ГСВ в гидроцилиндр под небольшим давлением (0,8…0,35 МПа) подается масло. При этом навесное устройство стремится поднять навешенную машину в транспортное положение, но давления, создающего подъемную силу 300…500 Н, для этого недостаточно. Тем не менее усилие передается через навесное устройство на корпус трактора, прижимая его задние колеса к почве и уменьшая их буксование.

Устройство ручного гидравлического насоса и принцип его работы

Устройство и схема гидравлического насоса с ручным приводом - изображение 30 - изображение 30

Самым простым в устройстве и эксплуатации является ручной гидравлический насос. В его основе лежит принцип вытеснения жидкостей. В промышленности такие агрегаты довольно востребованы, основной их функцией является перекачка горюче-смазочных материалов.

Принцип работы ручного гидравлического насоса - фото 31 - изображение 31

Ручной насос гидравлический

Устройство и схема гидравлического насоса с ручным приводом

Неисправности и их устранение - фото 32 - изображение 32

Схема гидравлического насоса ручного

Ручной гидронасос состоит из двух главных частей, качающий узел (1) и гидравлический бак (2). Они соединены между собой шпилькой (3). Заливать жидкость нужно через отверстие, предварительно открутив закрывающую его пробку (4). Ручка (6) с рычагом (7) приводит в движение плунжер (8) первой и второй ступеней, сделанных как одна деталь. Качающий узел имеет двухступенчатую структуру.  Ступень номер один при пониженном давлении и большей производительности служит для ускоренного перемещения плунжера гидроцилиндра. Ступень номер два при высоком давлении и меньшей производительности служит для получения рабочего усилия исполнительного механизма. Защиту от перегрузки осуществляет предохранительный клапан (9). Скидывание давления и извлечение гидравлической жидкости из полости цилиндра в бак происходит с помощью винта (10).

Принцип работы ручного гидравлического насоса

Обязательно перед началом работы с любым насосом следует осмотреть инструмент и в случае обнаружения трещин и сколов на поверхности не использовать его. Важно проверить плотно ли соединён рукав высокого давления с ручным насосом.

Алгоритм работы:

  1. Присоединяем насос к гидравлической системе быстроразъемным соединением;
  2. Закручиваем вентиль до конца по часовой стрелке.
  3. Поступательными движениями качаем ручку насоса верх и вниз. В результате чего происходит закачка масла в систему из насоса. При этом в системе происходит нагнетание давления, а также происходит ход поршня гидроинструмента в который мы закачиваем масло.
  4. При ситуации, когда рабочий поршень системы, в которую заливается масло достигнет конечного положения, в системе будет создано повышенное давление, в результате нагнетать масло будет невозможно. Тогда необходимо прекратить работу насоса во избежание выхода из строя устройства.
  5. Для того чтобы понизить давление в системе нужно медленно повернуть вентиль до конца против часовой стрелки. Результатом чего масло из системы потечет обратно в насос. Это происходит за счет возврата поршня в исходное положение.
  6. Закончив закачку масла стоит осмотреть гидравлическую систему на наличие подтеков масла, также следует осмотреть и насос. Обнаружив подтеки, следует немедленно их исправить.

 

Неисправности и их устранение

  • Ручной гидравлический насос не подает давление. Основными причинами такого поведения может быть отсутствие гидравлической жидкости в баке или не закрыт сливной кран. Во всяком случае стоит проверить эти версии, если все же кран закрыт и жидкость есть, то возможно причина в том что засорились всасывающий или нагнетательный клапан. Тогда вам придется разобрать и промыть клапаны гидронасоса.
  • Протекает масло (гидравлическая жидкость) в зазоре который находится между корпусом и плунжером.  В этом случае с большой вероятностью можно сказать что изношены или имеют повреждения уплотнительные кольца. Рекомендуется незамедлительно заменить их, чтобы предотвратить выход из строя.
  • Не выдает производительности указанной в техпаспорте. Вероятнее всего засорился фильтрующий элемент ручного гидронасоса. Рекомендуется тщательно промыть фильтрующий элемент.
  • Не развивает указанного в техпаспорте давления. Нарушена регулировка предохранительного клапана. Вам нужно настроить предохранительный клапан на то давление которое указанно в техпаспорте.

Как правильно выбрать ручной гидравлический насос?

Как правильно выбрать ручной гидравлический насос? - фотография 33 - изображение 33

Выбор

Три основные фактора выбора:

1.       Бак гидронасоса обязан быть больше емкости гидроцилиндра.

2.       Ручные гидронасосы бывают двух видов одностороннего и двустороннего действия обратите на этот параметр внимание.

3.       Уровень давления должен соответствовать нужному вам для работы. Выбирайте гидронасос с равным или большим давлением чем максимальное давление гидроцилиндра.

Стоит ли делать ручной гидравлический насос своими руками?

На текущий момент насосы, сделанные своими руками, почти не встречаются.  Несмотря на это можно сделать гидравлический насос своими руками. Нам понадобится бак из стали. Из него будет изготовлен корпус. Чтобы управлять давлением в баке нужен клапан. Его нужно закрепить вверху при помощи шайбы. Для управления клапана закрытия устанавливают рычаг. Труба из чугуна вполне может подойти. Чтобы контролировать давление используйте манометр. В конце концов получится устройство, которое не выдержит давление больше 4 атмосфер. При всем при этом самодельный гидронасос будет занимать большое место и неудобен в переносе. Минусом самодельных ручных насосов является низкое КПД, чтобы привести в действие насос потребуется приложить не малую силу. Также самодельные устройства весьма ненадежны. И если учесть все минусы, то тратить ресурсы на создание самодельного ручного гидронасоса очень неэффективно. Именно поэтому они и не распространены.

 

Ручные гидравлические насосы НРГ

Гидронасосы НРГ очень надежные устройства и весьма распространены у нас в России так как производятся здесь же.  Линейка НРГ насосов содержит устройства с распределителями. В конце обозначения таких инструментов обычно ставится буква «Р». Эта буква означает что инструмент может работать с гидроустройствами двустороннего действия.  Рассмотрим несколько моделей НРГ гидронасосов ручного типа:

Стоит ли делать ручной гидравлический насос своими руками? - изображение 34 - изображение 34

Насосы НРГ

  • Модель нрг-7020Р. Создает максимальное давление в 700 бар. И имеет номинальный объем бака 2 литра. В комплекте идет гидрораспределитель который позволяет работать с устройствами как одностороннего, так и двустороннего действия.
  • Модель нрг-7007. Также создает давление в 700 бар. Номинальный объем бака 0,7 литра. Достоинствами этой модели является присутствие предохранительного клапана, усилие на рукоятке минимально, и две ступени подачи масла. Данный инструмент предназначен для гидроинструмента одностороннего действия, с пружинным возвратом штока.
  • Модель нрг-67016Р.  Номинальный объем бака равен 14 литрам. Усилие на рукоять 55 кг. Давление максимум 4Мпа. Производительность 115 куб см. Весит такое устройство целых 30 кг и весьма габаритно. Подойдет для небольшого автосервиса.

Итоги, плюсы и минусы ручных гидравлических насосов.

Плюсы:

  1. Просты в эксплуатации;
  2. Не требуют никакого дополнительного источника энергии;
  3. Высокая ремонтопригодность;
  4. Обладают высокой мобильностью;

Минусы:

  1. Низкая производительность;
  2. Нужна мускульная сила оператора, следовательно, дополнительная нагрузка на оператора;

Итог, ручной гидравлический насос резонно использовать не больших мастерских и мобильных сервисах, где не нужно вкачивать большие объемы масла и нагнетать значительное давление. В целом ручные насосы очень удобны, а главное мобильны так как не зависят ни от каких источников энергии.

Насосы, которые мы будем рассматривать в дальнейшем, обладают индивидуальными эксплуатационными особенностями, поэтому при их выборе в первую очередь необходимо учитывать характеристики существующей гидросистемы — диапазон давления, вязкость перекачиваемой жидкости, стоимость конструкции и нюансы ее технического обслуживания.

Рассмотрим основные разновидности гидронасосов, детально остановившись на их преимуществах и недостатках.

Читайте также: особенности вибрационных насосов для скважин.

к меню ↑

1.1 Ручной гидравлический

Ручной гидронасос является простейшим оборудованием, в котором используется принцип вытеснения жидкости. Такие агрегаты широко распространены в сфере автомобилестроения, где они применяются в качестве дополнительных либо аварийных механизмов для обеспечения гидравлических двигателей энергией.

Ручной гидронасос типа НРГ (серия, наиболее распространенная в отечественной промышленности) может развивать давление дом 50 Бар, однако большинство моделей рассчитаны на давление до 15 Бар. Тут действует прямое соотношение — чем ниже рабочий объем агрегата (количество жидкости, вытесняемой за полный ход рукояти), тем большее давление он развивает.

Разновидности ручных гидронасосов

На изображении представлена схема работы, которой обладают ручные насосы. При нажатии ручки поршень перемещается вверх, в результате чего создается сила всасывание и через клапан КО2 в корпус поступает жидкость, которая вытесняется при поднятии рукояти. Насос ручной гидравлический НРГ может быть и двухсторонним (нижняя схема), в нем всасывание и вытеснение жидкости происходит одновременно, как при нажиме на рычаг, так и при его поднятии.

К преимуществам таких гидронасосов относится простота их конструкции (ремонт гидронасосов ручного типа достаточно прост), надежность и низкая стоимость. Слабой стороной является производительность, несравнимая с приводным оборудованием. к меню ↑

1.2 Радиально-поршневые модели

Радиально-поршневые конструкции способны развивать максимально возможное давление (до 100 Бар) при длительной работе. Существует два типа радиально-поршневых насосов:

  • роторные;
  • с эксцентричным валом.

Устройство роторных агрегатов показано на схеме. В них вся поршневая группа размещается внутри ротора, при вращении которого поршни совершают возвратно-поступательные движения и поочередно стыкуются с отверстиями для слива гидравлической жидкости.

Принцип работы радиально-поршневого насоса

Гидравлический насос высокого давления с эксцентричным валом отличается тем, что поршневая группа в нем установлена внутри статора, при этом такие насосы имеют клапанное распределение жидкости, а роторные — золотниковое.

К преимуществам такого оборудования отнесем высокую надежность, возможность работы в режиме высокого давления (100 МПа), минимальный уровень шума при работе. К недостаткам — высокий уровень пульсации при подаче жидкости и значительный вес. к меню ↑

1.3 Аксиально-поршневые

Наиболее распространенным типом оборудования в современных гидроприводах является аксиально-поршневой насос. Также существует аксиально-поршневая техника, которая отличается тем, что вместо поршней для вытеснения жидкости применяются плунжеры.

Насосы с аксиально-поршневым приводом, в зависимости от оси вращения поршневой группы, можно разделить на два типа — наклонные и прямые. Принцип работы у них идентичен — вращение вала насоса приводит к вращению блока цилиндров, параллельно которому поршни начинают возвратно-поступательное перемещение. При совпадении оси цилиндра и всасывающего отверстия поршень выдавливает жидкость из камеры, затем цилиндр заполняется и цикл повторяется.

Аксиально-поршневой гидронасос

По соотношению массогабаритных характеристик именно аксиально-поршневой насос является оптимальным вариантом. Он способен развивать давление до 40 МПа при частоте 5000 об/мин, узкоспециализированные установки работают на частоте 15-20 тыс. об/мин. Преимущества аксиально-поршневых насосов — максимальный КПД и производительность. Ключевым недостатком является высокая стоимость.

Характеристики гидронасосов 310-ой серии

В качестве примера такой техники можно рассмотреть популярный в отечественном машиностроении гидронасос 310. Существует несколько модификаций данной модели, рассчитанных на рабочий объем от 12 до 250 см3/об. Цена 310-ой модели варьируется в пределах 15-30 тыс. рублей, в зависимости от производительности. Более доступным аналогом является гидронасос 210 (цена 10-15 тыс), отличающийся меньшей частотой оборотов. к меню ↑

1.4 Шестеренчатые агрегаты

Шестеренные агрегаты относятся к категории роторного оборудования. Гидравлическая часть насоса в них представлена двумя вращающимися шестернями, зубья которых при сцеплении вытесняют из цилиндра жидкость. Существует два типа шестеренчатых насосов — с внешним и внутренним зацеплениям, которые отличаются расположением шестерен внутри корпуса.

Используются шестеренные агрегаты в системах с низким уровнем рабочего давления — до 20 МПа. Они широко распространены в сельскохозяйственной и строительной технике, системах подачи смазочных материалов и мобильной гидравлике.

Шестеренный гидронасос

Популярность шестеренных гидронасосов обуславливается простотой их конструкции, небольшими размерами и весом, за которые приходится платить небольшим КПД (до 85%), низкими оборотами и коротким эксплуатационным ресурсом. к меню ↑

1.5 Разбираемся в устройстве (видео)

к меню ↑

2 В чём особенности ремонта гидравлических насосов?

Практически все неисправности, которые могут возникнуть при эксплуатации гидронасосов любого типа, являются следствием следующих факторов:

  • неправильное управление гидронасосом и пренебрежение его техническим обслуживанием — несвоевременная замена масла и фильтров, отсутствие устранения протечек;
  • неправильно подобранная гидравлическая жидкость (масло);
  • использование сторонних комплектующих, не соответствующих режиму эксплуатации насоса (фильтры, уплотнения, шланги);
  • неправильная настройка гидронасоса.

Гидронасос в разобранном виде

Рассмотрим наиболее распространенные неисправности оборудования и методы их ликвидации:

  1. Аварийная остановка. Причиной может быть разрыв рукава от чрезмерного давления, недостаточный уровень рабочей жидкости либо блокировка нагнетающего патрубка. В последнем случае нужно своими руками извлечь обломки из камеры и заменить деформированные фильтры.
  2. Отсутствие набора давления. Скорее всего заклинило гнездо плунжера, которое требует чистки, либо деформировалась пружина клапана (необходимо заменить).
  3. Неравномерный темп движения поршня. Проверьте систему на предмет проникновения воздуха, также может чрезмерно загустеть рабочая жидкость либо забиться фильтр. Серьезный ремонт гидравлических насосов может потребоваться лишь при поломке вала вращения.
  4. Необычно высокий уровень вибрации. Причина — неправильная балансировка вала вращения с приводом, требуется проверка совпадения осей валов и их центровка.

Мелкий ремонт гидронасоса не станет серьезной проблемой, если под рукой есть ремкомплект, в который  входят запасные фильтры, резинки и уплотнительные втулки — наиболее изнашивающиеся элементы конструкции. Большинство производителей поставляют полные комплекты для каждой модели насоса по цене от 500 до 1000 рублей, однако комплект можно собрать и самому в соответствии с диаметром патрубков оборудования. В таком случае ремкомплект гидронасоса обойдется вас значительно дешевле. Главная страница » Насосы

Устройство автомобилей

Ручные гидравлические насосы НРГ - фото 35 - изображение 35



Гидравлические приводы тормозных механизмов появились несколько позже, чем механические приводы, примерно в 1910 – 1915 г.г.

Итоги, плюсы и минусы ручных гидравлических насосов. - фотография 36 - изображение 36

В массовом автомобилестроении гидравлический привод тормозов применяется с 1924 года благодаря разработкам инженеров американской автомобилестроительной компании «Крайслер» (Chrysler Group LLC). В своей работе такие приводы используют гидростатические законы, передавая энергию жидкости под давлением. Принцип действия гидростатического привода основан на свойстве жидкости сохранять свой объем при внешнем давлении (ничтожно малая сжимаемость), а также способности передавать создаваемое в любой точке давление одинаково всем точкам замкнутого объема жидкости (закон Паскаля).

Гидравлический привод широко применяется в качестве привода рабочей тормозной системы легковых автомобилей, грузовых автомобилей малой и средней грузоподъемности, а также автобусов малой вместимости.

***

Достоинства и недостатки гидропривода тормозов

Гидравлический привод тормозных механизмов имеет ряд существенных преимуществ перед другими типами привода:

  • одновременность торможения всех колес (в принципе) и требуемое распределение тормозных сил между отдельными колесами (дифференцирование тормозных усилий);
  • высокий КПД – 0,9 и выше при нормальной температуре охлаждающей жидкости (для сравнения – КПД механического привода редко превышает 0,6);
  • малое время срабатывания (0,05…0,2 сек). Благодаря этому свойству, обусловленному ничтожно малой сжимаемостью жидкости, гидравлический привод имеет неоспоримое преимущество перед пневматическим приводом, имеющим время срабатывания примерно в десять раз больше;
  • относительно малые габариты и масса применяемых в гидроприводе приборов и устройств;
  • простота конструкции и удобство компоновки (трубки гидропривода можно проложить как угодно и где угодно в кузове или других элементах конструкции автомобиля – на работоспособность привода это не повлияет).

Не лишены гидравлические приводы тормозов и некоторых существенных недостатков:

  • невозможность получения большого передаточного числа привода. Как известно, передаточное число гидростатических систем можно установить соотношением площадей поперечного сечения поршней передающего и принимающего усилие гидроцилиндров (или заменяющих их элементов). Очевидно, что существенное увеличение передаточного числа привода для повышения тормозного усилия приводит к значительному увеличению хода управляющего органа (тормозной педали или рычага);
  • выход из строя при местном повреждении какого-либо из элементов конструкции (трубки, штуцера и т. п.), т. е. относительно низкая надежность привода. Для устранения этого недостатка применяют многоконтурные приводы;
  • невозможность продолжительного и опасность чрезмерно интенсивного торможения. Продолжительное торможение может вызвать перегрев, и даже закипание тормозной жидкости из-за нагрева элементов конструкции тормозных механизмов (колодок, барабанов и т. п.). Интенсивное торможение с чрезмерным усилием может привести к повреждению уплотнительных элементов, что, в свою очередь, приведет к разгерметизации привода и потере его работоспособности;
  • высокая чувствительность к попаданию воздуха в привод, резко снижающая его работоспособность (и даже приводящая к полному отказу) при завоздушивании системы;
  • зависимость КПД привода от температуры тормозной жидкости (при низких температурах эффективность работы гидравлического привода резко снижается из-за повышения вязкости жидкости);
  • использование в качестве рабочего тела специальных жидкостей, способных нанести вред окружающей среде, животным и человеку при попадании на почву и во внешнюю среду.

***

Общее устройство гидравлического привода

Гидравлический привод тормозных механизмов может иметь разнообразные компоновочные схемы и включать различные приборы и устройства для обеспечения надежного и комфортного управлением процессами торможения автомобиля.Тем не менее, в любом гидравлическом приводе присутствуют обязательные элементы, различающиеся только конструктивно и имеющие одинаковый функционал. Рассмотрим устройство этих элементов и устройств на примере простейшего гидропривода тормозных механизмов.

2 В чём особенности ремонта гидравлических насосов? - фотография 37 - изображение 37

Простейший гидравлический привод (рис. 1) состоит из органа управления (тормозной педали 7), главного тормозного цилиндра 9, трубопроводов и колесных рабочих цилиндров 3.В современных гидроприводах обязательным элементом является регулятор давления (на рис. 1 не показан).Рассмотрим назначение и особенности устройства каждого из элементов гидравлического привода тормозных механизмов.

***

Главный тормозной цилиндр

Главный тормозной цилиндр воспринимает усилие, создаваемое ногой (или рукой) водителя посредством управляющего органа (педали или рычага) и передает его посредством подвижного поршня рабочей жидкости. Конструкции главных тормозных цилиндров могут быть различны, но принципы, положенные в основу их работы, одинаковые.

Конструктивно простейший главный тормозной цилиндр состоит из корпуса-цилиндра с размещенным в нем подвижным поршнем, а также уплотнительных и соединительных элементов. Более сложные конструкции, применяемые в двухконтурных и многоконтурных приводах, включают два поршня, каждый из которых обеспечивает работоспособность отдельного контура. Цилиндр при этом конструктивно разделен на два полностью или частично изолированных объема. Иногда в многоконтурных гидроприводах тормозов для повышения надежности применяют сдвоенные главные цилиндры, в корпусе которых параллельно выполнены два цилиндра с установленными в них поршнями.

Непосредственно на главном тормозном цилиндре или рядом с ним размещается резервуар с запасом тормозной жидкости – бачок 5 (рис. 1), объем которого посредством специальных каналов сообщается с объемом гидроцилиндра. Если бачок устанавливается отдельно, его соединяют с главным тормозным цилиндром посредством резиновой трубки. Связь гидроцилиндра с резервуаром обеспечивает пополнение жидкостью при утечках, вытеснение излишков жидкости при ее тепловом расширении, компенсацию изменения объема жидкости после регулировок.

В расторможенном состоянии полости цилиндров соединяются каналами с резервуаром для пополнения жидкостью при необходимости. При перемещении поршня после воздействия на него штока, связанного с тормозной педалью (рычагом) эти каналы перекрываются корпусом поршня, и жидкость может вытесняться из цилиндра только в трубопроводы контура гидропривода. В многоконтурных приводах применяются два резервуара (бачка) или один с раздельной перегородкой.

На рис. 2 изображена конструкция главного тормозного цилиндра рабочей тормозной системы автомобиля ГАЗ-53-12 и его модификаций.Тормозная система автомобиля имеет два контура, поэтому главный тормозной цилиндр разделен на две секции, каждая из которых обслуживает отдельный контур. Два резервуара (или один с раздельной перегородкой) сообщаются с полостью главного цилиндра через два отверстия.

Устройство автомобилей - фотография 38 - изображение 38

Поршни имеют кольцевые уплотнительные манжеты, прижимаемые пружинами. Наружная поверхность поршней имеет проточку для размещения уплотнительных колец, длина которых меньше длины проточки. Помимо проточки поршни имеют кольцевые полости и плоские угловые пазы, которые соединяются с резервуаром (бачком) при любом положении поршней. Это препятствует попаданию воздуха в гидравлическую магистраль.

Наиболее опасным, с точки зрения попадания воздуха в главный тормозной цилиндр, является режим растормаживания, который, как правило, производится быстро, броском педали. Жидкость, вследствие ее вязкости, возвращается в главный тормозной цилиндр относительно медленно, и поршни под действием пружин, стремятся оторваться от столба жидкости, создавая в магистрали разрежение.

Предотвратить при этом попадание воздуха в магистраль одними резиновыми уплотнениями сложно, поэтому с тыльной стороны поршней или в них самих располагают полости, заполненные жидкостью, и при любом положении поршней сообщаются с резервуаром с помощью отверстий. Таким образом создается своеобразный гидравлический затвор, препятствующий проникновению воздуха в гидропривод.

В корпусе гидроцилиндра ввернуты упорные болты, определяющие крайнее правое положение поршней и уплотнительных колец, соответствующее расторможенному состоянию тормозной системы. Конфигурация поршней такова, что в указанном крайнем положении кольца, упираясь в болты, отрывают манжеты от поршней, сообщая резервуары с магистралями. В начале торможения поршни, перемещаясь в цилиндре (один – под действием штока педали, другой – под действием давления жидкости) надвигаются на манжеты, после чего тормозная жидкость начинает вытесняться в магистрали контуров.

В случае потери герметичности одного контура, питаемого, например, через левое отверстие, левый поршень, вытеснив жидкость через обрыв магистрали, упирается уплотнителем в дно цилиндра, образовав для правой рабочей полости фиктивное дно и обеспечивая герметичность второй рабочей полости.Если разгерметизация произойдет в контуре, подпитываемом из правой полости, то правый поршень, вытеснив жидкость через место утечки, упрется удлинителем в левый поршень, непосредственно передавая на него усилие со стороны штока.

В современных конструкциях главных тормозных цилиндров устанавливают сигнализаторы уровня жидкости в резервуаре (бачке). Контрольная лампа сигнализатора (красного цвета с соответствующим изображением) устанавливается на щитке приборов. Датчики таких сигнализаторов имеют поплавковую конструкцию – плавающий в бачке с жидкостью поплавок при нормальном уровне жидкости размыкает контакты цепи питания лампы сигнализатора.При недопустимом понижении уровня жидкости поплавок опускается ниже, контакты цепи питания сигнальной лампы замыкаются, и она загорается, сигнализируя водителю о недостатке жидкости в резервуаре.

При заправке гидравлического привода тормозной системы рабочей жидкостью, а иногда и при эксплуатации автомобиля, из тормозной системы необходимо удалить воздух. Для этого в самых высоких местах привода и местах вероятного завоздушивания устанавливают клапаны прокачки.

***



Колесные рабочие цилиндры

Колесные рабочие цилиндры являются исполнительными элементами привода. Они принимают давление жидкости, создаваемое главным тормозным цилиндром, и приводят в действие тормозные механизмы колес.

Рабочие цилиндры (рис. 3) имеют чугунный или (реже) из легкого сплава корпус и поршни с уплотнительными манжетами. Регулировка зазоров производится между фрикционными накладками и барабаном автоматически. На поршень рабочего цилиндра надевается разрезное пружинное кольцо.Между кольцом и поршнем имеется радиальный и осевой зазоры. Величина осевого зазора нормируется и соответствует необходимой величине зазора между колодкой и барабаном. Радиальная упругость кольца также нормируется с целью получения определенной величины силы трения между кольцом и цилиндром. Указанная сила трения должна гарантированно превышать силу возвратных пружин, приведенную к поршню, но не быть чрезмерной, чтобы не слишком сильно снижать приводную силу поршня.

Общее устройство гидравлического привода - фото 39 - изображение 39

Для регулировки механизма после сборки необходимо нажать на педаль тормозной системы. Поршни рабочих цилиндров, перемещаясь наружу под действием давления жидкости, выберут имеющийся зазор, после чего потянут кольца за собой. Движение поршней будет продолжаться до тех пор, пока колодки не упрутся в барабан.При отпускании педали возвратные пружины смогут переметить поршни назад только на величину, соответствующую осевому зазору между поршнем и кольцом, так как сдвинуть кольцо они не в состоянии. Величина же зазора между кольцом и поршнем, как было указано выше, соответствует необходимому зазору между колодками и барабаном.Таким образом, по мере изнашивания тормозных накладок кольцо будет перемещаться вдоль цилиндра, поддерживая постоянную величину зазора между накладками колодок и барабаном.

***

Регулятор давления

Регулятор давления корректирует давление тормозной жидкости в системе задних тормозных механизмов в зависимости от изменения нагрузки на задние колеса.

Регулятор (рис. 4) состоит из корпуса, в котором установлена гильза поршня. В углубление на гильзе вставляется шарик, который удерживается пружиной. В гильзе перемещается поршень, на конце которого крепится управляющий конус. Возвратная пружина поршня удерживает его в исходном положении пир неработающем регуляторе.В корпус регулятора ввернута втулка, на конце которой установлен защитный резиновый чехол.

В подпоршневую полость регулятора поступает жидкость от главного тормозного цилиндра, а из надпоршневой полости выходит жидкость для приведения в действие колесных рабочих цилиндров задних тормозных механизмов. Управление регулятором осуществляется посредством упругого элемента, который крепится к полу кузова и к нажимному рычагу поршня регулятора.

До вступления в работу регулятора давление жидкости одинаково как в обеих полостях, так и в любой точке гидропривода, так как перепускной шарик поднят управляющим конусом, что обеспечивает свободное прохождение тормозной жидкости из подпоршневой полости в надпоршневую.

Устройство и принцип работы гидропривода - фото 40 - изображение 40

При торможении увеличивается расстояние между кузовом и задним мостом (автомобиль «кивает»), при этом уменьшается нагрузка на задние колеса и соответственно уменьшается сила, действующая со стороны упругого элемента на поршень регулятора. Когда усилие со стороны жидкости на головку поршня превысит сумму усилий упругого элемента и жидкости на меньшую (подпоршневую) площадь поршня, последний переместится в сторону нажимного рычага, а управляющий конус освободит шарик, который под действием прижимной пружины перекроет доступ жидкости из подпоршневой полости в надпоршневую. С этого момента давление в подпоршневой полости будет выше давления в надпоршневой, обслуживающей задние тормозные механизмы.

В результате тормозное усилие на колодки передних тормозных механизмов будет несколько выше, чем в задних тормозных механизмах, что обеспечит эффективное торможение. Если автомобиль полностью загружен, то при торможении его задняя часть менее поднимется над задним мостом, и разница в давлениях полостей над поршнем регулятора и под ним будет незначительной.

После снятия усилия с педали тормозной системы поршень регулятора возвратится в исходное положение, а управляющий конус, приподняв шарик, откроет доступ жидкости из подпоршневой полости в надпоршневую.Давление жидкости по всему контуру тормозного привода выровняется.

***

В настоящее время на некоторых автомобилях применяется гидравлический привод с принудительной подачей рабочей жидкости к тормозным механизмам, оборудованный специальным насосом. В этом случае для создания необходимых для эффективного торможения автомобиля тормозных моментов на колесах используется энергия двигателя, приводящего в действие гидравлический насос непосредственно, или через какой-либо агрегат силовой передачи автомобиля.Такая конструкция, несмотря на некоторую сложность, позволяет обойтись без усилителей гидропривода, существенно уменьшить усилие, прилагаемое водителем к управляющим органам тормозной системы и повысить комфорт управления автомобилем.

***

Пневматический привод тормозных механизмов



Главная страница
  • Страничка абитуриента
Специальности
  • Ветеринария
  • Механизация сельского хозяйства
  • Коммерция
  • Техническое обслуживание и ремонт автотранспорта
Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  •    Карта раздела
  •       Общее устройство автомобиля
  •       Автомобильный двигатель
  •       Трансмиссия автомобиля
  •       Рулевое управление
  •       Тормозная система
  •       Подвеска
  •       Колеса
  •       Кузов
  •       Электрооборудование автомобиля
  •       Основы теории автомобиля
  •       Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Устройство и принцип работы гидропривода

Принцип работы гидравлики - фото 41 - изображение 41

Гидроприводом называется система, в которой передача энергии от источника (обычно насоса) к гидродвигателю (гидромотору или гидроцилиндру) осуществляется посредством капельной жидкости.

Структурно гидропривод состоит из насоса (-ов), контрольно-регулирующей и распределительной аппаратуры, гидродвигателя (-лей), рабочей жидкости, емкости (бака) для ее содержания и средств (фильтров и охладителей), сохраняющих ее качества, а также соединительной и герметизирующей арматуры.

На рис. 2.1. изображена схема изучаемого объемного гидропривода состоящего из насоса 1, предохранительного клапана 2, распределителей 3 и 4, гидравлических двигателей – гидромотора 5 и гидроцилиндра 6, замедлительного устройства 7 опускания груза 8, бака и установленного в сливную гидролинию фильтра 9 сблокированного клапаном 10.

Принцип работы гидравлики - изображение 42 - изображение 42

Рис. 2.1 Схема изучаемого гидропривода.

Насос 1 предназначен для преобразования механического энергетического потока, поступающего от первичного энергетического источника 11 (электрического или топливного двигателя) в гидравлический энергетический поток, т.е. в поток рабочей жидкости под давлением, который в зависимости от положений (позиций) затворов распределителей 3, 4 может направляться непосредственно (холостой режим) или через один или оба вместе гидравлические двигатели 5, 6 (рабочий режим) в бак. При этом величина давления на выходе из насоса зависит от совокупности сопротивлений, встречаемых потоком рабочей жидкости на пути от насоса до бака. В тех случаях, когда распределители 3, 4 находятся в позициях «А» (см. рис. 2.1), поток рабочей жидкости от насоса 1 проходит в бак через упомянутые распределители, гидролинии и фильтр 9 (холостой режим). Величина давления на выходе из насоса составляет:

Принцип работы гидравлики - фотография 43 - изображение 43

,

где

Принцип работы гидравлики - изображение 44 - изображение 44

– величины давлений необходимых для преодоления потоком рабочей жидкости сопротивлений, соответственно, участков гиролиний, распределителей и фильтра.

В тех случаях, когда по команде извне один или оба распределители 3, 4 переводятся в любое положение «Б» или «В», в работу включается (-ются), соответственно, один или оба гидродвигатели. Направление движения гидродвигателей зависит от положения «Б» и «В» их распределителей. Когда в работу включен только один гидродвигатель, например гидромотор 5, рабочее давление на выходе из насоса составит:

Принцип работы гидравлики - изображение 45 - изображение 45

,

где

Принцип работы гидравлики - фото 46 - изображение 46

– потери давления на преодоление сопротивления распределителя 3, 4

Принцип работы гидравлики - фотография 47 - изображение 47

– потери давления на привод гидромотора 5, зависящие от преодолеваемой нагрузки на его валу.

В том случае, когда в работу одновременно включены гидромотор 5 и гидроцилиндр 6, то их совместная работа возможна только при одинаковых потребных давлениях. Если у одного из них потребное давление ниже, чем у другого, то их совместная работа невозможна, так как поток жидкости в основном будет уходить в сторону меньшего сопротивления и нарушать нормальную работу гидропривода в целом.

Если в гидроприводе потребное давление превышает допустимое, срабатывает предохранительный клапан 2 и отводит через себя поток рабочей жидкости от насоса 1 в бак (режим перегрузки), обеспечивающий этим ограничение давления в гидроприводе и защиту его элементов от разрушения.

Для обеспечения плавности опускаемых грузов (рабочих органов) в гидроприводах используются замедлительные устройства (см. рис. 2.1, поз 7), обычно состоящие из обратного клапана и дросселя. При подъеме груза (рабочего органа) рабочая жидкость в цилиндр поступает через обратный клапан и дроссель. При опускании груза жидкость из полости цилиндра уходит в бак только через дроссель, который оказывает ей сопротивление, величина которого зависит от величины ее потока и этим обеспечивает плавность его опускания. При этом противоположная полость гидроцилиндра заполняется жидкостью подаваемой насосом. В случае избыточного количества подаваемой насосом жидкости ее часть будет отводиться на слив через предохранительный клапан 2.

Для визуального контроля давления в гидроприводе предназначен манометр 12. Для обеспечения очистки рабочей жидкости от твердых загрязнителей (абразивов, продуктов изнашивания), в гидроприводах используют различного конструктивного исполнения фильтры.

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 636)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты