Электронно-лучевые (электронные) осциллографы предназначены для визуального наблюдения, измерения и регистрации электрических сигналов. Возможность наблюдения изменяющихся во времени сигналов делает осциллографы чрезвычайно удобными при определении различных амплитудных и временных параметров наблюдаемых сигналов. Важными достоинствами осциллографов являются широкий частотный диапазон (до 100 МГц), высокая чувствительность и большое входное сопротивление. Все это обусловило их широкое практическое применение.
В основе работы любых электронных осциллографов лежит преобразование исследуемых сигналов в видимое изображение, получаемое на экране электронно-лучевой трубки.
Электронно-лучевые трубки
Простейшая однолучевая трубка (ЭЛТ) представляет собой стеклянный баллон, из которого откачан воздух и в котором расположены (рис. ниже) подогреваемый катод К, модулятор (сетка) М, фокусирующий анод А1 ускоряющий анод А2, две пары взаимно перпендикулярных отклоняющих пластин ОПх и ОПу (горизонтальные и вертикальные отклоняющие пластины). Внутренняя поверхность дна баллона (экран Э) покрыта люминофором, способным светиться под действием бомбардировки электронами.
Рис. Схема управления лучем электронно-лучевой трубки
Совокупность электродов К, M, A1, А2 называют электронной пушкой. Конструктивно эти электроды выполнены в виде цилиндров, расположенных по оси трубки. Электронная пушка излучает узкий пучок электронов — электронный луч. Для этого на электроды пушки подают напряжение, как показано на рисунке, где ЦУЭЛ — цепи управления электронным лучом.
Интенсивность электронного луча регулируют путем изменения отрицательного относительно катода напряжения на модуляторе, что приводит к изменению яркости свечения люминофора. Напряжения на первом и втором анодах формируют электронную линзу для фокусировки потока электронов в узкий луч, позволяющий получить на экране трубки светящееся пятно малого размера. Для ускорения электронов до скорости, необходимой для свечения люминофора, служит третий анод А3, на который подается высокое положительное напряжение.
Сформированный электронный луч проходит между парами отклоняющихся пластин ОПх и ОПу и под действием напряжений, приложенных к этим пластинам, отклоняется, соответственно, по осям координат X и У, вызывая смещение светящегося пятна на экране трубки. На рис.4.20 также показана упрощенная схема управления начальной установки луча по оси Y (по оси X управление аналогичное). Меняя положение подвижного контакта переменного резистора («Смещение Y»), можно изменять напряжение на пластинах Y и тем самым смещать луч по экрану.
Чувствительность электроннолучевой трубки равна
(4.37)
где lt — отклонение луча на экране трубки, вызванное напряжением Ut приложенным к отклоняющим пластинам. Обычно ST = 0,5 ÷ 5 мм/В.
Устройство и принцип действия осциллографа
Упрощенная функциональная схема осциллографа (рис.4.21) включает в себя электронно-лучевую трубку ЭЛТ, входной делитель напряжения ВД, усилитель вертикального отклонения УВО, состоящий из предварительного усилителя ПУ, линии задержки ЛЗ и выходного усилителя ВУ, блок синхронизации БС, генератор развертки ГР, усилитель горизонтального отклонения УГО и калибраторы амплитуды КА и длительности КД.
Рис.4.21. Функциональная схема электронно-лучевого осциллографа
Исследуемый сигнал подается на вход Y канала вертикального отклонения, включающего в себя входной делитель и усилитель вертикального отклонения. Выходное напряжение УВО, поступая на вертикальные отклоняющие пластины, управляет отклонением электронного луча в трубке по оси Y.
При подаче переменного напряжения на вход Y электронный луч вычерчивает на экране осциллографа вертикальную линию. Для получения изображения исследуемого сигнала, развернутого во времени, необходимо смещать (развертывать) луч по оси X с равномерной скоростью. Это осуществляется подачей на отклоняющие пластины ОПх линейно изменяющегося пилообразного напряжения, вырабатываемого генератором развертки ГР.
Принцип развертки изображения иллюстрируется рис.4.22, где даны кривые изменения напряжения их и uу, подаваемые на пластины ОПх и OПy и получающееся при этом изображение на экране осциллографа. Цифрами 1 - 4, 1’- 4' обозначены точки кривых в соответствующие моменты времени. Из рисунка видно, что при равенстве периодов напряжений их и uY на экране получается неподвижное изображение одного периода исследуемого сигнала. При увеличении периода пилообразного напряжения их в п раз на экране появится изображение п периодов исследуемого сигнала.
Для получения устойчивого изображения на экране осциллографа частота пилообразного напряжения развертки должна быть кратна частоте исследуемого сигнала. Выдержать точно кратность частот напряжений их и uY на практике оказывается достаточно сложно вследствие «ухода» частоты генератора ГР и изменения частоты исследуемого сигнала. Это приводит к неустойчивости изображения сигнала. Для обеспечения устойчивости изображения в осциллографе имеется блок синхронизации БС, который осуществляет изменение частоты генератора ГР (в некоторых пределах) в соответствии с частотой исследуемого процесса.
Для наблюдения непериодических или однократных сигналов используется ждущий режим работы генератора развертки, при котором пилообразный импульс вырабатывается только с приходом исследуемого импульса. Для того, чтобы не потерять изображение на экране начальной части сигнала, в канале вертикального отклонения используется линия задержки ЛЗ. Благодаря ей исследуемый сигнал поступает на пластины вертикального отклонения спустя некоторое время tЗАД после начала работы генератора развертки.
В осциллографах предусматривается также возможность запуска генератора развертки от внешнего источника сигналов, подключаемого к специальному входу «Вход синхронизации».
Основные характеристики осциллографов
Коэффициент отклонения КU – отношение напряжения входного сигнала к отклонению луча (в делениях шкалы), вызванному этим напряжением. Типовой диапазон значений 50 мкВ/дел – 10 В/дел.
Коэффициент развертки Кt - отношение времени Δt к отклонению луча, вызванному напряжением развертки за это время. Типовой диапазон значений 0,01 мкс/дел – 1 с/дел.
Полоса пропускания – диапазон частот, в пределах которого коэффициент отклонения изменяется не более чем на 3 дБ относительно значения на средней частоте. Современные осциллографы имеют полосу пропускания 100 МГц.
Классы точности осциллографов - 1, 2, 3 или 4 при величине основной погрешности измерения напряжения и временных интервалов, соответственно, не более 3, 5, 10, 12%.
Параметры входов осциллографов определяется активным сопротивлением RВХ (>1 Мом) и входной емкостью СВХ (единицы пикофарад)
- 4 Автоматическое измерение параметров сигнала
- 5 Плюсы и минусы цифрового осциллографа
- 6 Где купить цифровой осциллограф
Цифровой осциллограф
Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие в том, что внутри него идет цифровая обработка сигналов, в отличие от аналогового осциллографа. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять сигнал. В этом заключается его главное отличие от простого аналогового осциллографа.
Принцип работы осциллографа
В осциллографе исследуемый электрический сигнал подается через канал вертикального отклонения на вертикально отклоняющую систему ЭЛТ, а горизонтальное отклонение электронного луча трубки осуществляется напряжением горизонтальной развертки.
ЭЛТ представляет собой вакуумную стеклянную колбу, внутри которой размещены электронная пушка, отклоняющие пластины и люминесцентный экран. Электронная пушка состоит из подогреваемого катода К, модулятора (сетки) яркости светового пятна М, электродов фокусировки и ускорения электронного луча — фокусирующего анода А1ускоряющего анода А2 и основного анода А3. Яркость свечения люминофора ЭЛТ регулируется путем изменения отрицательного напряжения на модуляторе М. Напряжение на первом аноде А1 фокусирует электронный поток в узкий луч. Чтобы придать электронам скорость, необходимую для свечения люминофора, на второй анод А2 подается достаточно большое (до 2000 В) положительное напряжение. Для дополнительного ускорения электронов используют основной анод А3, к которому приложено высокое положительное напряжение (до 10... 15 кВ).
Из курса физики вы знакомы с устройством электронной пушки, отметим лишь, что ее назначением является формирование узкого электронного пучка, при попадании которого на люминесцентный экран на экране возникает светящееся пятно.
Упрощенно работу отклоняющих систем ЭЛТ можно пояснить следующим образом. Электронный пучок (луч), проходит между двумя парами взаимно перпендикулярных металлических отклоняющих пластин: вертикально отклоняющих Y и горизонтально отклоняющих X. Если к отклоняющим пластинам приложить напряжение, то между ними будет существовать электрическое поле, которое будет вызывать отклонение электронного луча в ту или иную сторону. Когда напряжение приложено к вертикально отклоняющим пластинам, то пятно будет перемещаться по оси Y; если же напряжение приложено к горизонтально отклоняющим пластинам, то световое пятно на экране трубки будет отклоняться вдоль оси X. Если теперь сфокусировать электронный луч так, чтобы световое пятно расположилось в центре экрана ЭЛТ, а затем к пластинам Y приложить исследуемое напряжение, а к пластинам X пилообразное напряжение, то под совместным воздействием двух напряжений луч вычертит на экране трубки осциллограмму, отражающую зависимость входного напряжения от времени.
Канал вертикального отклонения луча служит для передачи на пластины Y ЭЛТ исследуемого сигнала uc(t), подводимого к входу Y. Канал вертикального отклонения луча содержит аттенюатор, линию задержки и усилитель Y. Аттенюатор позволяет ослабить сигнал в определенное число раз, а регулируемая линия задержки обеспечивает небольшой временной сдвиг сигнала на пластинах Y ЭЛТ относительно начала развертывающего напряжения Ux, что важно для ждущего режима. Усилитель Y обеспечивает амплитуду сигнала на пластинах Y, достаточную для значительного отклонения луча на экране даже малым исследуемым сигналом uс(t).
В свою очередь, усилитель Y канала вертикального отклонения луча содержит входной усилитель с изменяемым коэффициентом усиления Куси парафазный (с противофазными выходными сигналами одинаковой амплитуды) усилитель, обеспечивающий положение светового пятна в центре экрана при отсутствии исследуемых сигналов. В канал вертикального отклонения луча может также входить калибратор амплитуды. Сигнал от калибратора поступает на вход первого усилителя для установки заданного коэффициента усиления Кус1.
Основные характеристики канала вертикального отклонения:
• верхняя граничная частота (порядка 100 МГц и более);
• чувствительность Sy = kдКуcSт (Sт— чувствительность трубки); чувствительность составляет около 1 мм/мВ при kд= 1;
• входное сопротивление (1... 3 МОм) и входная емкость канала (1... 5 пФ);
• погрешности измерения напряжения и интервалов времени 5...7 %.
Скакой целью во входной цепи канала вертикального отклонения включают коммутируемый разделительный конденсатор?
- он позволяет при необходимости исключить подачу на вход осциллографа постоянной составляющей исследуемого сигнала («закрытый» вход).
^ Канал горизонтального отклонения луча служит для создания горизонтально отклоняющего — развертывающего — напряжения Ux с помощью напряжения генератора развертки или для передачи (через аттенюатор и усилитель) на пластины X исследуемого сигнала, подводимого к входу X.
Схема синхронизации (и запуска развертки) управляет генератором развертки и обеспечивает кратность периодов сигнала и развертки. Для получения неподвижного изображения начало развертки должно быть связано с одной и той же характерной точкой сигнала (фронтом, максимумом амплитуды и т.д.). Это достигается синхронизацией напряжения развертки с напряжением сигнала, поэтому период развертки должен быть равен или кратен периоду исследуемого сигнала: Тразв = nТс, где n = 1, 2, 3,4, ....
Развертка — это линия, которую прочерчивает луч на экране при отсутствии исследуемого сигнала в результате действия только одного развертывающего напряжения.
Процесс привязки развертки к характерным точкам сигнала называют синхронизацией в автоколебательном режиме и запуском — в ждущем. Синхронизация и запуск развертки производятся специальным синхроимпульсом, подаваемым на генератор из устройства синхронизации.
В осциллографе установлены два режима синхронизации: внутренняя и внешняя. При внутренней синхронизации (переключатели П1 и П2 — в положении 1) синхроимпульсы вырабатываются из усиленного входного сигнала до его задержки. При внешней (переключатели П1 и П2 — в положении 2) — сигнал синхронизации подается от внешнего источника на специальный вход X осциллографа. Например, в стандартных генераторах импульсов вырабатываются синхроимпульсы, относительно которых выходной сигнал может быть сдвинут с помощью регулируемой задержки.
Схема синхронизации вырабатывает сигнал синхронизации, поступающий на генератор развертки для получения четкой, неподвижной осциллограммы. Усилитель X канала горизонтального отклонения усиливает пилообразный сигнал Uр генератора развертки и преобразует его в напряжение развертки Ux.
Канал горизонтального отклонения характеризуется чувствительностью и полосой пропускания, показатели которых практически раза в два меньше, чем в канале вертикального отклонения. Основной блок в канале горизонтального отклонения — генератор развертки, работающий в непрерывном или ждущем режиме. К форме пилообразного напряжения генератора предъявляется ряд требований:
• время обратного хода луча должно быть много меньше времени прямого хода, т.е. То6р « Тпр. В противном случае часть изображения сигнала будет отсутствовать;
• напряжение развертки при прямом ходе луча должно быть линейным, иначе луч будет двигаться по экрану с различной скоростью и нарушится равномерность временного масштаба по оси X. Это может привести к искажению сигнала.
Канал управления яркостью (канал модуляции электронного луча по яркости) осциллографа предназначен для подсветки прямого хода луча. Подсветка осуществляется путем передачи с входа Z на управляющий электрод (модулятор М) ЭЛТ сигнала, модулирующего поток ее луча и, следовательно, яркость свечения люминофора. Постоянное напряжение на модуляторе ЭЛТ выбирают на уровне запирания трубки. В схему этого канала входят: аттенюатор, схема изменения полярности и усилитель Z. Для формирования требуемого уровня напряжения, поступающего на модулятор, служит усилитель Z. Усилитель может иметь дополнительный вход. Это дает возможность модуляции изображения по яркости внешним сигналом. Канал Z используется и для создания яркостной отметки в осциллографах с двойной разверткой, а также яркостных меток для измерения частоты и фазы.
Калибратор — генератор напряжений, формирующий периодический импульсный сигнал с известными амплитудой, длительностью и частотой для калибровки осциллографа, т. е. для обеспечения правильных измерений параметров исследуемого сигнала.
Для калибровки оси Y используют постоянные напряжения обеих полярностей (иногда плавно регулируемые) и напряжения в виде меандра. Масштаб по оси X обычно устанавливают по синусоидальному напряжению, стабилизированному по частоте кварцем.
Виды разверток в универсальном осциллографе
Одним из основных блоков осциллографа является ЭЛТ, выходные элементы которой — две пары пластин, с помощью генераторов развертки отклоняющие луч горизонтально и вертикально. Если развертывающее напряжение приложено к одной паре отклоняющих пластин (обычно к пластинам X), то развертку называют по форме развертывающего напряжения (например, линейной или синусоидальной). Если развертывающие напряжения приложены к отклоняющим пластинам X и Y трубки одновременно, то название развертке дается по ее форме (например, круговая или эллиптическая).
Наиболее широко используется линейная развертка, создаваемая пилообразным напряжением Up генератора развертки. В случае линейной развертки луч, двигаясь равномерно по экрану, прочерчивает прямую горизонтальную линию, как бы нанося на экран ось абсцисс декартовой системы координат — ось времени. В зависимости от режима работы генератора развертки такую развертку подразделяют на несколько видов. Рассмотрим некоторые из них.
Автоколебательная развертка — это развертка, при которой генератор развертки периодически запускается (автоматически) и при отсутствии сигнала запуска на его входе.
Ждущая развертка — развертка, при которой генератор развертки запускается только с помощью сигнала запуска.
Однократная развертка — развертка, с помощью которой генератор развертки запускается один раз с последующей блокировкой. Однократная развертка применяется для наблюдения одиночных и непериодических процессов, а также при фотографировании с экрана осциллографа неповторяющихся сигналов.
При подаче на горизонтально отклоняющие пластины напряжения uх = uр пилообразной формы, электронный сфокусированный луч под воздействием этого напряжения перемещается слева направо на интервале Тпр (точки 0-1-2 — длительность прямого хода луча) и справа налево на интервале То6р (точки 2-3 — длительность обратного хода луча). Причем скорость движения луча в обратном направлении много больше (обычно луч при этом гасится), чем в прямом.
С помощью напряжения развертки, подаваемого на горизонтальные пластины ЭЛТ (пластины X) осциллографа, на его экране можно наблюдать исследуемый сигнал, поступающий на пластины У и изменяющийся во времени (развернутый во времени).
Автоколебательная (непрерывная) развертка применяется для исследования периодических сигналов, а также импульсных с небольшой скважностью q = Tс/τ Она включается при внутренней синхронизации.
Н
а рисунке представлены исследуемые импульсы uс длительностью τ каждый, развертывающее синхронное напряжение uх и наблюдаемая осциллограмма (в рамке). Период повторения импульсов и период развертывающего напряжения: Тс = Тр.
С помощью автоколебательной развертки почти невозможно наблюдать непериодические сигналы и она фактически бесполезна при наблюдении периодических коротких импульсных сигналов с большой скважностью q (это связано с тем, что передний и задний фронты импульса почти сливаются). В этих случаях используют ждущую развертку.
Х
арактерный пример использования ждущей развертки в осциллографе показан на следующем рисунке. Генератор развертки запускается только при поступлении импульсов uс. Если длительность развертки, равная t2 – t1 сопоставима с длительностью исследуемого импульса, то его изображение на экране достаточно детально.
В осциллографе в силу инерционности генератора начало ждущей развертки может быть несколько задержано относительно фронта импульса uс. Поэтому, если фронт импульса очень короткий, то он может не отобразиться на осциллограмме. Для наблюдения короткого фронта сигнал uс задерживают на τ3 во времени в канале Y с помощью линии задержки (штриховые импульсы uс на рис.). Наблюдаемая осциллограмма дана вместе с не задержанным импульсом штриховой линией (справа).
Для решения ряда измерительных задач, например измерения частоты или разности фаз, вместо пилообразного напряжения развертки (линейной развертки) используют синусоидальную развертку. Для получения синусоидальной развертки на пластины X подают напряжение, изменяющееся по гармоническому закону . При этом генератор линейной развертки осциллографа отключается. Положительный полупериод напряжения синусоидальной развертки вызывает перемещение луча от центра экрана до его правой границы и обратно; отрицательный полупериод — от центра экрана до его левой границы и обратно к центру. Скорость перемещения луча изменяется по синусоидальному закону, хотя линия развертки представляет собой горизонтальную линию.
Для получения круговой развертки на пластины Y подается синусоидальный сигнал , а на пластины X— аналогичный по форме и амплитуде сигнал, но задержанный на четверть периода (по фазе на φ = 90°), т.е. . Осциллограмма круговой развертки показана на рисунке.
Под действием напряжений разверток uу и ux луч прочерчивает на экране окружность за период Т. Положение луча на экране в момент времени t = 0 отмечено точкой 0, в момент t1 — точкой 1 и т. д. Если амплитуды сигналов uу и uх не равны, то круг искажается и на экране наблюдается эллипс, т.е. возникает эллиптическая развертка. Например, при uу < uх большая ось эллипса расположена по горизонтали, а малая по вертикали. При фазовых сдвигах, не равных 90°, также получается эллипс с наклонными осями, вырождающимися в прямую при нулевом фазовом сдвиге.
В современных осциллографах широко распространены генераторы двойной развертки (задерживающей и задержанной). Применение двойной развертки существенно увеличивает функциональные возможности осциллографа. В частности, это позволяет рассматривать отдельные участки сигнала в удобном масштабе, что повышает точность измерения.
Электронно-лучевая трубка (ЭЛТ)
Способ получения сфокусированного луча и принцип управления лучом можно пояснить с помощью схемы, представленной на рисунке. Как уже отмечалось, в ЭЛТ совокупность электродов К, М, А1, А2 А3 называется электронной пушкой, которая излучает узкий пучок электронов. Для этого на электроды подаются напряжения, примерные величины которых даны на рисунке.
Основные характеристики ЭЛТ —чувствительность, полоса пропускания, длительность послесвечения, площадь экрана.
Чувствительность трубки ST = LT/UT, где LT — отклонение луча на экране трубки под воздействием напряжения UT, приложенного к паре отклоняющих пластин Обычно SТ порядка 1 мм/B.
С увеличением частоты исследуемого сигнала чувствительность трубки падает. Верхняя граница полосы пропускания ЭЛТ устанавливается на уровне, где чувствительность составляет примерно 0,7 от номинального значения. Для универсальных осциллографов широкого использования эта частота достигает 200 МГц. В современных осциллографах часто применяются многолучевые трубки, что достигается увеличением количества электродов. Более экономичным оказывается использование однолучевого осциллографа в режиме поочередной подачи двух сигналов на отклоняющие пластины (двухканальные осциллографы). За счет эффекта послесвечения трубки и свойств глаза на экране наблюдается одновременное изображение двух сигналов, хотя они подаются поочередно.
Один из важных параметров ЭЛТ — площадь рабочей части экрана, в пределах которой искажения осциллограммы минимальны. Для повышения эффективности использования площади экрана современные ЭЛТ имеют экран прямоугольной формы.
К световым параметрам ЭЛТ относятся:
• диаметр светового пятна, который при оптимальной яркости определяет разрешающую способность ЭЛТ;
• максимальная яркость свечения экрана — зависит от плотности электронного луча и регулируется изменением отрицательного напряжения на модуляторе;
• цвет свечения экрана — чаще всего используют зеленый и желтый цвета, обеспечивающие наименьшую утомляемость глаз; для фотографирования с экрана применяют ЭЛТ с голубым свечением, к которому более чувствительны фотоматериалы;
• время послесвечения — для улучшения визуального восприятия осциллограммы время свечения экрана должно превышать время воздействия на него электронов.
Если требуется наблюдать процессы с частотой менее 10 Гц, используют экраны с послесвечением средней продолжительности до 100 мс. Для фоторегистрации более предпочтителен люминофор с малым (0,01 с) послесвечением. При исследовании медленно меняющихся процессов применяют экраны, имеющие послесвечение более 0,1 с.
Напряжение развертки при прямом ходе луча должно быть линейным, иначе появятся искажения исследуемого сигнала. Нелинейность рабочего участка развертки прямого хода луча характеризуется коэффициентом нелинейности, физический смысл которого поясняется рисунком ниже. Коэффициент нелинейности выражает относительное изменение скорости нарастания напряжения в начале и конце рабочего хода развертки. Коэффициент нелинейности рабочего участка развертки не должен превышать 1%.
Перечисленным требованиям отвечал бы идеальный генератор развертки, упрощенная структурная схема которого
Бесконечно большая емкость С заряжается током iзар от источника тока I в течение достаточно большого интервала времени Тпр, а затем в течение очень малого времени при замкнутом ключе происходит ее разряд током iраз. Время замыкания ключа соответствует времени обратного хода. Тогда напряжение развертки для рабочего участка запишется так:
т .е. имеет место линейная зависимость.
Однако реальная схема генератора отличается (справа). Для этой схемы изменение напряжения на конденсаторе в течение рабочего времени определяется формулой:
где τ = RC — постоянная времени.
Разложив функцию в ряд Тейлора
получим:
Если ограничиться двумя членами разложения то нетрудно заметить, что в основном нелинейность напряжения генератора определяется составляющей
Следовательно, необходимо, чтобы значение , что возможно при τ » Тпр. Этот случай соответствует работе на начальном участке экспоненты, т.е. на линейной части развертки. Это значит, что режим источника напряжения Е должен приближаться к режиму генератора тока.
Практически линейную развертку на экране ЭЛТ при ограниченном уровне питающего напряжения Е можно создать в схемах интеграторов на ОУ .Поскольку в схеме в силу идеальности ОУ ток i0 = 0, находим, что
Приравняв токи и полагая RC = τа, после несложных преобразований, получим:
т.е., данное устройство на ОУ будет осуществлять линейное интегрирование напряжения развертки.
Двухканальные и двулучевые осциллографы
Двухканальные осциллографы имеют два идентичных канала вертикального отклонения (вход первого — Y1, второго — Y2) и электронный переключатель, который может поочередно подавать выходные сигналы каналов на одни и те же пластины Y. В зависимости от управления работой электронного переключателя можно реализовать следующие основные режимы работы осциллографа: одноканальный (на экране виден один сигнал, подаваемый на И или Y1); поочередный (на экране видны оба сигнала за счет переключения электронного переключателя во время каждого обратного хода развертки). На основе двухканального принципа строят многоканальные осциллографы с числом каналов до восьми.
Двулучевые осциллографы имеют два канала У и специальную двулучевую ЭЛТ, в которой есть две независимые электронные пушки и пара систем отклоняющих пластин. Горизонтальная развертка лучей общая — запускается от генератора развертки, а вертикальная — каждая от «своего» канала У, что позволяет наблюдать на экране осциллограммы двух сигналов (без их периодического прерывания, как в двухканальных). Такие осциллографы намного сложнее схемотехнически и дороже двуканальных.
Автоматизация процесса измерений в универсальных осциллографах
Автоматизация процесса измерений дает значительный выигрыш во времени и в ряде случаев существенно повышает точность измерений. Рассмотрим возможные пути автоматизации регулировок и отсчета показаний при проведении осциллографических измерений.
Автоматическая установка масштабов по осям Y и X.
Действие автоматической установки масштабов заключается в том, что при изменении амплитуды и длительности входного сигнала в интервале динамического диапазона осциллографа размеры изображения остаются постоянными или меняются в заданных пределах. При этом производится цифровая индикация коэффициентов отклонения и развертки либо на специальном индикаторе, либо непосредственно на экране ЭЛТ.
Автоматизация регулировки яркости изображения. Регулировка яркости изображения — одна из необходимых операций при осциллографировании. Она занимает много времени, так как яркость зависит от скорости перемещения луча по экрану, связанной с видом сигнала и величиной установленного масштаба. Кроме того, яркость изображения не остается постоянной в пределах экрана, так как изображение сигнала содержит участки, проходимые лучом с разной скоростью. Для получения одинаковой яркости изображения на экране используется принцип автоматической модуляции луча ЭЛТ. Уровень общей яркости изображения устанавливается для наиболее благоприятных условий наблюдения. Отметим, что выравнивание изображения по яркости увеличивает точность измерения, особенно в случаях, когда сигнал имеет участки с резко отличающейся скоростью изменения напряжения (например, импульс с крутыми фронтами). Так как фокусировка луча зависит от яркости, в современных осциллографах применяют систему автофокусировки. При этом напряжение на фокусирующих электродах ЭЛТ автоматически меняется при вариации яркости луча.
Перевод аналогового входного сигнала в цифровую форму позволяет автоматизировать не только процесс регулировки, но и процесс измерения и обработки сигнала.
Наиболее просто цифровая обработка сигнала реализуется в стробоскопических осциллографах, так как дискретизация сигнала во времени лежит в основе принципа действия стробоскопического преобразователя. В цифровом устройстве проводится дискретизация сигнала только по уровню, результаты преобразования обрабатываются встроенным микропроцессором или внешним компьютером.
Запоминающие осциллографы
При исследовании одиночных сигналов и периодических сигналов с большой скважностью используют запоминающие осциллографы, основой которых являются запоминающие трубки.
З апоминающие электронно-лучевые трубки содержат те же элементы, что и ЭЛТ универсального осциллографа, а также дополнительно оснащаются узлом памяти и системой воспроизведения изображения. Узел памяти состоит из двух плоских сеточных электродов, расположенных параллельно экрану. Непосредственно у экрана находится мишень, покрытая слоем диэлектрика. Поверх мишени размещен другой электрод в виде сетки с более крупной структурой — коллектор.
Изображение записывается электронным лучом высокой энергии (записывающий луч). Электроны луча оседают на мишени, причем количество заряда пропорционально току луча. При перемещении луча на мишени создается потенциальный рельеф, повторяющий форму осциллограммы. После прекращения действия сигнала потенциальный рельеф мишени сохраняется длительное время. Наблюдать записанное изображение позволяет воспроизводящая система, состоящая из подогреваемого катода К', анода А'2 и модулятора М'. Катод трубки создает поток электронов малой энергии, плотность которого регулируется модулятором М'. В результате формируется широкий расфокусированный пучок электронов, равномерно облучающий мишень. Потенциал мишени подобран таким образом, чтобы при отсутствии записанного изображения медленные электроны воспроизводящего пучка не могли через нее пройти. При наличии потенциального рельефа в этих точках мишени часть электронов проходит к экрану, вызывая его свечение. На экране появляется осциллограмма, повторяющая форму потенциального рельефа мишени. Стирается запись путем подачи на коллектор отрицательного импульса, выравнивающего потенциал мишени.
У запоминающей трубки можно выделить три характерных режима работы:
• наблюдение сигнала без записи изображения — на коллекторе небольшое положительное напряжение Uкол = + 50 В, на мишени нулевой потенциал Uмиш= 0, мишень прозрачна для быстролетящих электронов;
• режим записи — Uкол = + 50 В, на мишень подается положительный потенциал Uмиш = 30 В, и мишень становится менее прозрачна, в результате быстро летящие электроны выбивают вторичные электроны и создают на мишени положительный потенциальный рельеф, который может оставаться длительное время;
• режим воспроизведения — потенциал мишени снова становится нулевым Uмиш = 0, кроме тех мест, где записан рельеф; мишень облучается широким потоком медленно летящих электронов с воспроизводящей системы, для этого потока мишень прозрачна только в местах рельефа, где записан сигнал.
Запоминающие ЭЛТ характеризуют следующие параметры:
• яркость свечения экрана в режиме воспроизведения — она регулируется напряжением модулятора системы воспроизведения и может быть высока, так как воспроизведение производится непрерывно;
• время воспроизведения изображения — это время в основном ограничивается устойчивостью потенциального рельефа к ионной бомбардировке; в современных ЭЛТ время воспроизведения может достигать десятков минут;
• время сохранения записи — оно определяется при снятом напряжении с ЭЛТ;
• скорость записи — характеризует быстродействие ЭЛТ в режиме запоминания; определяется временем, необходимым для создания потенциального рельефа достаточной величины.
Современные запоминающие ЭЛТ имеют скорость записи сигналов от 2,5 до 4000 км/с.Аналоговое устройство
Сегодня всё реже можно встретить аналоговые осциллографы в исследовательских лабораториях или сервисных центрах. Но у радиолюбителей всё ещё достаточно морально устаревших, но ещё вполне работоспособных таких приборов. Любое аналоговое устройство состоит из одного или нескольких вертикальных каналов, горизонтального канала, схемы запуска и электронно-лучевой трубки (ЭЛТ).
ЭЛТ является основной частью устройства. На ней отображается форма исследуемого сигнала. Выполняется она из вакуумной колбы, в которую впаиваются электроды различного назначения. Первая группа формирует электронную пушку, образующую луч. На неё подаётся исследуемый сигнал. А вторая — состоит из контактов вертикально и горизонтально отклоняющих пластин и к ней подводится напряжение генератора развёртки.
Таким образом, устройство состоит из следующих частей:
- аттенюатора — входной делитель напряжения;
- предварительный усилитель;
- блок задержки;
- схема синхронизации и запуска развёртки;
- генератор;
- оконечный усилитель.
Измеряемый сигнал поступает на вертикальные пластины, а далее на аттенюатор, который позволяет настраивать чувствительность прибора. Выполняется регулирующее устройство в виде поворотной ручки. Шкала переключения указывается в вольтах на одно деление. При измерениях мощного сигнала используются делители. Это специальные устройства, работающие по принципу аттенюаторов, но при этом они уменьшают сигнал до безопасного уровня для входных цепей осциллографа.
Сигнал с делителя или аттенюатора разветвляется на предварительном усилителе и попадает в блок задержки и синхронизации. Последний узел создаёт условия для запуска генератора при появлении электромагнитных колебаний. Пилообразный сигнал с генератора поступает в горизонтальный канал X, где усиливается и подаётся на экран.
Вторая же часть сигнала через линию задержки поступает в канал Y, а затем на ЭЛТ. В результате на экране в системе координат XY выводится положение импульса. Нижний частотный предел находится в районе 10 Гц, а верхний зависит от ёмкости пластин и качества усилителей. Поэтому если на пластины подаётся измеряемое напряжение, то луч начинает отклоняться по вертикали и горизонтали. Эти перемещения происходят синхронизировано, и в результате сигнал «разворачивается» во времени. Получившееся изображение на экране называют осциллограммой.
Цифровой прибор
Цифровое устройство сочетает в себе аналоговый осциллограф и мини-компьютер. Используя его можно не только визуально увидеть форму, но и выполнить ряд операций, таких как сложение и вычитание сигналов, преобразование Фурье, определение спектра.
В состав прибора входит:
- масштабирующий узел;
- аналого-цифровой преобразователь (АЦП);
- оперативная память (ОЗУ);
- микроконтроллер;
- запоминающие ячейки;
- экран;
- элементы управления (кнопки, ручки).
Сигнал поступает на вход масштабирующего узла, где снижается до безопасной величины для внутренних схем прибора. Далее он подаётся через усилитель на АЦП. В нём происходит преобразование аналоговой формы в ряд дискретной последовательности логического кода. Для этого используется микроконтроллер, работающий на принципе широтно-импульсной модуляции (ШИМ).
Код записывается в ОЗУ, из которого после выполнения определённого условия передаётся в запоминающие ячейки. Каждому блоку соответствует пиксель, который засвечивается. Координата Х определяется номером ячейки, а координата Y кодом, записанным в неё. В запоминающей ячейке может содержаться несколько символов кода, которые и формируют линию из непрерывно горящих пикселей.
Цифровые осциллографы разделяются на несколько подтипов и могут быть:
- Виртуальными — имеющими различные порты ввода и вывода. Они предназначены для работы с внешним программным обеспечением, устанавливаемым на ПК.
- Стробоскопическими — использующими последовательную выборку мгновенных значений и временное их преобразование с помощью непродолжительных импульсов (стробов).
- Фосфорными — отображающими сигнал во временной и амплитудной плоскости, а также его интенсивность. Такие приборы характеризуются высокой плотностью выборки и точностью.
Использование ЖК экрана повышает удобство в работе с осциллографом. На нём становится возможным визуально отображать любые данные, а использование памяти в устройстве позволяет сравнивать любые изменения формы сигнала во времени.
Параметры приспособления
Осциллограф, как и любой электрический прибор, имеет ряд технических параметров. Именно они определяют его функциональность и степень использования. К его работе предъявляются требования по классу точности, стабильности работы, шумовым характеристикам.
Важнейшими параметрами прибора являются:
- Полоса пропускания частоты. Характеризует точность измерений. Чем она больше, тем более детально можно изучить форму сигнала. При этом значение этого параметра должно превышать частоту исследуемого сигнала в несколько раз.
- Дискретизация. Определяет разрешающую способность прибора.
- Число каналов. Их значение определяет число одновременно независимых измерений, которые можно выполнить на устройстве. Это даёт возможность выводить на экран сразу несколько графиков и сравнивать их между собой. Радиолюбительский класс имеет 2−4 канала, а профессиональный до 16.
- Размер памяти. Её величина влияет на скорость отклика устройства.
- Тип питания. Существуют приборы, работающие от сети переменного напряжения 220 вольт или аккумуляторных батарей.
- Время нарастания входного сигнала. Чем меньше, тем лучше. Это значит, что чем меньше «отгрызается» начало первого сигнала на экране при внутренней синхронизации, то тем лучше частотные свойства осциллографа.
- Характеристики экрана. Сюда относится: детализация, инертность, частота развёртки. Причём чем выше разрешение, тем больше степень детализации.
- Режим сегментированной памяти. Некоторые цифровые приборы имеют режим сегментированной памяти. То есть у них есть возможность выборочно фиксировать сигналы с нужной (высокой) частотой дискретизации.
- Наличие эквивалентного режима. Применяется для исследования периодического сигнала. Позволяет поднять частоту дискретизации в несколько раз.
Применение осциллографа
Осциллограф предназначен для изучения различных взаимосвязей между несколькими величинами. Отображаемая на экране осциллограмма показывает как изменяется форма напряжения во времени. Так, по ней можно легко определить полярность, амплитуду, длительность, скважность и частоту сигнала.
В грубом приближении осциллограф работает как графический вольтметр. Он измеряет сигнал и выводит его форму на дисплей. Устройством можно измерить даже напряжение высокой частоты. Его основное назначение заключается использование поиска неисправностей в сложных радиоэлектронных схемах или исследовательских измерениях. Например, с помощью него возможно:
- определять временные параметры;
- изучать фазовый сдвиг;
- фиксировать частоту сигнала;
- наблюдать переменную и постоянную составляющую напряжения;
- отмечать присутствие гармоник и их параметров;
- выяснять процессы, происходящие во времени.
Таким образом, осциллограф нужен для того, чтобы можно было наглядно наблюдать колебания электротехнического сигнала, а также видеть помехи и искажения, тем самым определяя неисправный элемент в различных узлах по форме входного и выходного импульса. Кроме этого, осциллограф широко применяется при диагностике электродвигателей. Изучая генерации, возникающие при работе мотора, можно вычислить неисправность катализатора, выявить увеличенный подсос воздуха, отследить сигналы с различных датчиков.
Работа с измерителем
Перед тем как воспользоваться осциллографом, выполняется калибровка. Для этого измерительные щупы подключаются к входу усилителя (отклонение луча в вертикальной плоскости) и общему выводу, обозначаемому как земля. В случае если используется ЭЛТ, после включения необходимо подождать некоторое время для прогрева экрана.
Затем понадобится пройти следующие этапы:
- Регулятор установки времени выставляется на деление, соответствующее 1 мс/дел.
- Ручка «Вольт/деление» переключается в положение 0,5 В/дел.
- Контроль синхроимпульсов переводится в режим «авто». Если такое положение не предусмотрено, то выбирается внутренняя синхронизация и устанавливается тип сигнала — переменный.
- Вращая регуляторы положения луча (вверх/вниз и вправо/влево), устанавливают режим «Авто» или просто добиваются появления луча на экране.
- Переключатель вида сигнала переводится в позицию GND (земля).
- Общий щуп соединяется со специальным контактом заземления корпуса устройства. Если в осциллографе такого контакта нет, то зажим щупа одевается на любую неизолированную металлическую часть корпуса.
- Переключатель «Тип сигнала» переводится в нейтральное положение для подключения вывода к земле. Если же такого переключателя нет, то щупы замыкаются друг с другом.
- Ручками вертикальной и горизонтальной настройки добиваются установки луча на середину экрана.
- Если устройство имеет переключатель «Тип сигнала», то он устанавливается в положение замера постоянной формы или щуп просто отсоединяется от гнезда заземления.
- Переключением масштаба «Вольт/деление» добиваются разворачивания сигнала на весь экран, что повышает точность наблюдений.
- С помощью измерительных проводов приступают к нужным исследованиям, подстраивая в случае необходимости масштаб «Вольт/деление».
Таким образом, использование осциллографа, позволяет осуществлять операции по настройке и ремонту сложных приборов, которые с помощью тестера выполнить невозможно. Работа на современном устройстве не намного сложнее измерений, проводимых мультиметром.
Что можно измерить при помощи осциллографа
- Напряжение (амплитуду).
- Временные параметры, по которым можно рассчитать частоту.
- Отслеживать сдвиг фаз.
- Видеть искажения, которые вносит элемент или участок цепи.
- Определить постоянную и временную составляющие сигнала.
- Увидеть наличие шума.
- Рассчитать соотношение сигнал/шум.
- Видеть/определить параметры импульсов.
Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали. Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).
Устройство и принцип работы
Рассмотрим блок-схему и алгоритм работы аналогового осциллографа. Как уже говорили, изменять изображения можно по горизонтали и по вертикали. Приборы на основе электронно-лучевой трубки (ЭЛТ) для этого имеют две пары пластин. Одна пара для изменения масштаба по вертикали (амплитуда или напряжение). Вторая — для растягивания или сжатия по горизонтали (временные параметры).
Устройство аналогового осциллографа: блок-схема
Отслеживаемый сигнал подается на входной усилитель, где усиливается или уменьшается до заданных значений. Значение задается переключателями. Коэффициент усиления обычно от 100 до 1000. Усиленный сигнал идет на пластины вертикальной развертки электронно-лучевой трубки.
Горизонтальная развертка формируется на основе пилообразного сигнала, который генерируется в соответствующем блоке (генератор развертки). Его параметры также задаются соответствующим переключателем. Отображение на экране ЭЛТ идет в режиме реального времени, с некоторой задержкой. Величина задержки прописывается в технических характеристиках прибора.
Основные блоки аналогового осциллографа
Для работы осциллографа важен блок синхронизации. Он обеспечивает появление картинки в момент поступления потенциала на вход. За счет этого на экране мы видим сигнал за некоторый промежуток времени. Есть разные типы синхронизации. Они выбираются переключателем. Чаще всего выбирают синхронизацию от самого исследуемого сигнала. Есть еще от сети и внешнего источника.
Режимы работы осциллографа
Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы. Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.
Выбор режима работы осциллографа
Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.
Так выглядит экран осциллографа в автоколебательном (авторежиме) при отсутствии сигнала
Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).
Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.
Делитель (аттенюатор)
Исследуемый сигнал может иметь напряжение от десятых долей до сотен вольт. Есть осциллографы со встроенным регулятором чувствительности — аттенюатором. Выглядит он как переключатель с градуировкой. Она задает «вес» одного деления на экране и определяет, во сколько раз понижается входной сигнал. Если ожидается малый уровень, мы просто выставляем на 1 или на 0,1. В таком случае одно деление на экране по вертикали будет 1 В и 0,1 В соответственно. И «понижать» сигнал будут в 1 раз (то есть, передадут как есть) или усилят в 10 раз перед подачей на вход (это если стоит 0,1).
Не все осциллографы имеют встроенный делитель (аттенюатор). В комплекте с таким прибором идут внешние делители на 1:10 или 1:100. Это прямоугольные или цилиндрические насадки с разъемами с обоих сторон. Они устанавливаются во входной разъем и через них подается напряжение на вход, но уже пониженное в соответствующее количество раз.
Примерно так выглядит делитель. Он устанавливается во входное гнездо, а к нему уже подключается измерительный шнур
Ставить делитель необязательно. Необходимость определяется по ожидаемому уровню сигнала. В характеристиках указывается максимальное входное напряжение, которое может подаваться на прибор без делителя и с делителем. По уровню ожидаемого сигнала и ставим насадку. Если уровень неизвестен, сначала выставляют самый большой делитель (или самое большое деление на аттенюаторе). Это предохранит прибор от перегорания если потенциал будет высоким. По результатам первого замера выбирается оптимальный режим.
Особенности цифровых моделей
Цифровой осциллограф работает иначе — аналоговый сигнал преобразуется в цифровую форму. В таком виде он записывается в ЗУ и передается на монитор, где из цифрового формата переводится снова в аналоговую форму. Отображение на экране начинается только в тот момент, когда уровень на входе превысит определенное значение (задается настройками).
Периодичность смены картинки зависит от выбранного режима работы: автоматический, одиночный и обычный. Обычный — это аналог ждущего.
Упрощенная блок-схема цифрового осциллографа
Чем лучше цифровые модели? Во-первых, такое преобразование делает изображение более стабильным. Во-вторых, проще увеличивать и уменьшать масштаб. В-третьих, есть возможность записи. Ну, и габариты. Самый небольшой аналоговый осциллограф — С1-94 — имеет размеры 100*190*300 мм и вес 3,5 кг. А цифровые при размерах 100*50-60*13-20 мм имеют вес порядка 150-300 граммов. И это вместе с аккумуляторами.
Как работать с осциллографом
Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения. Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.
Подключение осциллографа
В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.
Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу. Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.
Измерительные шнуры для осциллографа
Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа). После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.
Проверка осциллографа перед работой
Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.
Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен
Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.
Как измерить осциллографом напряжение: переменное, меандра, постоянное
Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.
Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.
Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел = 15 V. Получается, данный сигнал имеет напряжение 15 вольт. Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.
Как осциллографом определить частоту
Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.
Как определить частоту сигнала по осциллографу
Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц
Полоса пропускания осциллографа: что это и на что влияет
При выборе осциллографа смотрят на следующие параметры:
- Полоса пропускания.
- Максимальное входное напряжение.
- Режимы развертки.
- Источники синхронизации.
Обо всех параметрах, кроме полосы пропускания, уже рассказали. Полоса пропускания — это чуть ли не важнейший показатель. Она определяет максимальную частоту сигнала, который будет отображаться без искажений. Например, при полосе пропускания 20 Гц — 20 МГц, все что имеет более высокую частоту будет подавляться.
Там, где полоса пропускания заканчивается, частоты жестко подавляются
Как же выбирать частоту пропускания? Зависит от того, какие сигналы вы собираетесь изучать и насколько «глубоко» вам надо их исследовать. Для аналоговых сигналов все просто — верхний предел должен быть больше чем максимальная частота. С меандрами все сложнее. На самом деле они состоят их суммы нечетных гармоник сигнала. Чем больше гармоник, тем больше форма похожа на квадрат, а не на сглаженное что-то. Но гармоники высокого порядка имеют очень высокую частоту. Если надо исследовать фронты, их отклонение, то верхний предел полосы пропускания — это десятки гигагерц. А такие приборы очень дорогие. Для обычной синусоиды достаточно 10-20 МГц, что значительно дешевле.
Оставить комментарий: