Принцип работы пьезоэлемента

Что такое пьезоэлектрический эффект?

Что такое пьезоэлектрический эффект? - изображение 1 - изображение 1

Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.

Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.

Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.

Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы. Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта. Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.

Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.

 Прямой пьезоэлектрический эффект

Пьезоэлектрический материал (керамический или кристаллический) помещают между двумя металлическими пластинами. Для генерации электрического заряда необходимо приложить механическое усилие (сжать или разжать). При приложении механического усилия на металлических пластинах начинает скапливаться электрический заряд:

 Прямой пьезоэлектрический эффект - фотография 2 - изображение 2

Таким образом, пьезоэлектрический эффект действует как миниатюрный аккумулятор. Микрофоны, датчики давления, гидролокаторы и другие чувствительные устройства используют этот эффект для своей работы.

Обратный пьезоэлектрический эффект

Выше упоминалось, что существует и обратный пьезоэлектрический эффект. Он заключается в том, что при приложении электрического напряжения к пьезоэлектрическому кристаллу произойдет механическая деформация тела, под которой оно будет расширяться или сжиматься:

Обратный пьезоэлектрический эффект - изображение 3 - изображение 3

Обратный пьезоэлектрический эффект значительно помогает при разработке акустических устройств. Примером могут послужить звуковые колонки, сирены, звонки. Преимущества таких динамиков в том, что они очень тонкие, а это делает их практически незаменимыми при использовании в мелких устройствах, например, в мобильных телефонах. Также этот эффект часто используют медицинские ультразвуковые и гидроакустические датчики.

Пьезоэлектрические материалы

Данные материалы должны производить электрическую энергию из-за механических воздействий, таких как сжатие. Также эти материалы должны деформироваться при приложении к ним напряжения.

Данные материалы условно разделяют на две группы – кристаллы и керамические изделия. ЦТС (известный как цирконат-титанат свинца), титанат бария, ниобат лития – примеры искусственных пьезоэлектрических материалов, обладающих более ярко выраженным эффектом, чем кварц и другие природные материалы.

Давайте сравним искусственно полученный цирконат-титанат свинца ЦТС и природный элемент кварц. Итак, ЦТС способен вырабатывать гораздо большее напряжение при одинаковой деформации. Соответственно при обратном эффекте он склонен к большей деформации при одном и том же напряжении. Кварц – первый известный пьезоэлектрический материал.

ЦТС производится при высоких температурах с двух химических элементов – свинца и циркония, с добавлением химического соединения под названием титанат. Химическая формула ЦТС PbO3. Он широко используется для производства ультразвуковых преобразователей, керамических конденсаторов, датчиков и других электронных устройств. Он также имеет специфический диапазон различных свойств. Впервые был изготовлен в 1952 году в Токийском технологическом институте.

Титанат бария представляет собой сегнетоэлектрический керамический материал с пьезоэлектрическими свойствами. По этой причине титанат бария использовался в качестве пьезоэлектрического материала больше, чем другие. Титанат бария был открыт в 1941 году во время Второй мировой войны и имеет химическую формулу BaTiO3.

Ниобат лития – соединение, сочетающее в себе кислород, литий и ниобий. Имеет химическую формулу LiNbO3. Как и титанат бария, является сегнетоэлектрическим керамическим материалом.

Пьезоэлектрические устройства

Гидролокатор

Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов. Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок. В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.

На рисунке ниже показан принцип работы гидролокатора:

Пьезоэлектрические материалы - изображение 4 - изображение 4

А принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.

Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.

Пьезоэлектрические исполнительные устройства

Ниже показана работа силового привода на  основе пьезоэлектрического эффекта:

Пьезоэлектрические устройства - фото 5 - изображение 5

Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.

Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.

Пьезоэлектрические громкоговорители и зуммеры

Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.

Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.

Пьезо драйверы

Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.

Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:

Состояние и перспективы развития пьезоэлектрических генераторов - фото 6 - изображение 6

Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя. Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.

Состояние и перспективы развития пьезоэлектрических генераторов

Пьезоэлектрический (пьезопленочный или пьезокерамический) громкоговоритель - фотография 7 - изображение 7

Преобразователь пьезоэлектрический: назначение и применение - фото 8 - изображение 8

makulaturoman

2015-07-13 20:29:00

В последние годы получило новое развитие направление пьезоэлектрического приборостроения, связанное с созданием пьезоэлектрических преобразователей для генерации электрической энергии за счет использования механической энергии деформации, перемещения конструкций и движения транспортных средств и человека.Внедрение новой технологии изготовления пленочных пьезоэлектрических элементов с толщиной от 5 до 100 мкм и реализация технологии их автоматической сборки в многослойные конструкции позволяют изготовить пьезоэлектрические генераторы с оптимальными параметрами, обеспечивающими согласование их импеданса с импедансом нагрузки и выходными напряжениями от 2–10 до 240–300 В [1–4]. Конструкция пьезогенератора определяется конструкцией пьезоэлемента.

Пьезоэлементы, в которых направление поляризации совпадает с направлением механического усилия, используются при создании мощных пьезоэлектрических генераторов на напряжения 100–300 В. Пьезоэлементы изгибного типа (биморфы), в которых направление поляризации перпендикулярно направлению деформации при вибрации, используются при создании мини-пьезоэлектрических генераторов на напряжения 2–10 В.

Как правило, мощные пьезоэлектрические пьезогенераторы являются преобразователями механической энергии (с давлением не менее 1–2 кН) в электрическую при циклическом нагружении, при этом переменное напряжение преобразуется с помощью мостовых выпрямителей в постоянное. Поскольку пьезопреобразователь работает в течение продолжительного времени с относительно малой электрической энергией, производимой за один цикл, как правило, используется система накопления и хранения энергии (рис. 1). Для стабилизации выходного напряжения пьезогенератора на заданном уровне используется система с обратной связью, специальный контроллер. Контроллер также обеспечивает согласование импеданса пьезогенератора с выходным импедансом потребителя энергии.

Прямой и обратный пьезоэффект - фото 9 - изображение 9

Рис. 1. Блок-схема модуля питания

В работах [1–4] показана принципиальная возможность создания двух вариантов конструкции пьезоэлектрических генераторов в основном как источника зарядки аккумуляторных батарей на напряжение 2–10 В.

В последние годы начаты работы по созданию на основе многослойных монолитных конструкций пьезоэлементов мощных источников питания.

В работе [5] были проведены исследования и определены предельные параметры многослойных пьезоэлектрических генераторов на основе многослойных пьезоэлементов с габаритами 6×6×2,7 мм (количество слоев 50, толщина слоя 50 мкм). Основные конструктивные и электрические их параметры приведены в работах [6, 7]. Целью исследования являлась разработка макетного образца автономного пьезоэлектрического источника питания на основе преобразования механической энергии движения поезда (количество вагонов 10) в постоянное напряжение для подзарядки устройств питания радиомодуля, обеспечивающего его непрерывную работу в течение двух часов, выходное напряжение 3–5 В, максимально развиваемое усилие 5×107 Н/м2, цикличность движения — один состав в час со средней скоростью 20 км/ч.

Было разработано два варианта конструкции макетных образцов многослойных пьезогенераторов:

  • первый — из 13 многослойных элементов, соединенных механически последовательно, а электрически параллельно;
  • второй — из одного слоя многослойных элементов, расположенных попарно на ситалловых подложках 48×48×0,5 мм и соединенных электрически параллельно (сверху слой закрыт такой же ситалловой подложкой, в слое шесть линеек по шесть элементов).

Были проведены исследования электрофизических параметров пьезогенераторов на устройствах, позволяющих воспроизводить циклические нагружения пьезогенераторов, аналогичные воздействию движущегося поезда на рельсы.

Следует отметить, что проведенный расчет деформации рельсов от давления основного вагона поезда массой 60 т показал, что их величина менее 0,001 мкм, и при расчете преобразования механической энергии в электрическую этот параметр можно не учитывать.

Исследования проводились в электрической схеме включения (рис. 2).

Дополнительные пьезоэффекты - фото 10 - изображение 10

Рис. 2. Принципиальная электрическая схема источника питания

Диод VD1 в этой схеме предотвращает утечки заряда обратно к пьезогенератору (ПГ), когда давление снижается. Диод VD2 обеспечивает разряд обратного напряжения, которое возникает на пьезогенераторе, когда давление спадает до нуля после переклички с генерированной энергией в накопителе (в данном случае в качестве накопителя использована емкость Сн = 40 мкФ, = 2×107 Н/м2). Время одного цикла нагружения и сброса нагрузки не более 1 мин., общее количество циклов не менее 120.

Для многослойных пьезогенераторов наблюдается линейная зависимость напряжения и заряда от давления вплоть до предельных значений 2×108 Па.

При давлении 107 Н/м2 пьезогенератор обеспечивает напряжение 7 В и величину заряда 70×10–6 К, энергия 21×10–5 Дж.

Для второго варианта конструкции напряжение 10 В, заряд 180×10–6 К, энергия 75×10–5 Дж. Результаты исследований показали, что такой пьезогенератор может обеспечить подзарядку аккумулятора радиопередатчика мощностью 10 Вт при увеличении площади сечения в 100 раз и увеличении цикла нагружения в течение 1 ч до 10 раз.

В работе [8] были рассмотрены предельные параметры конструкции многослойных пьезоэлектрических генераторов в качестве твердотельных батарей. Показано, что для аналогичных элементов толщиной до 100 мкм предельные значения давления составляют 5×108 Н/м2. Удельное предельное значение запасенной энергии в пьезогенераторе при давлении 108 Н/м2: W/V = 0,25–0,3 Дж/см3, удельное значение величины заряда Q/S = 5–6×10–2 К/м2.

Проведенные исследования предельных параметров двух вариантов макетных образцов пьезогенераторов показали, что расчетные предельные соотношения с точностью ±10% совпадают с результатами эксперимента при давлении 107 Н/м2. Первый вариант конструкции обеспечивает заряд ~660×106 К, второй — 1760×10–6 К, электрическая энергия 21×10–3 Дж и 77×10–3 Дж соответственно.

Предельные параметры 108 Н/м2 для многослойных пьезоэлектрических конструкций соответствуют требованиям, обеспечивающим их надежную и долговечную работу (~цикл до 2×109 импульсов), тогда как предел разрушения многослойной керамики достигает 109 и более Н/м2.

Несколько лет назад в Израиле были начаты разработки мощных пьезогенераторов, преобразующих механическое давление транспортных средств (автомашины, поезда, самолеты) в электрическую энергию. Созданная в 2008 г. израильская компания Innowattech (Energy Harvesting Systems) занимается исследованиями и разработками пьезоэлектрических генераторов с системой сбора энергии [9]. Разрабатываются варианты, преобразующие в электроэнергию энергию давления:

  • автомобилей на полотно дороги (для автомобильных дорог);
  • движущегося железнодорожного транспорта на полотно железной дороги (для железных дорог);
  • самолета при взлете и посадке на взлетно-посадочную полосу (для аэродромов).

Производство электрической энергии при преобразовании давления транспортных средств имеет ряд преимуществ:

  • не требует выделения дополнительных площадей;
  • не наносит ущерба окружающей среде (экологически чистое производство);
  • не зависит от погодных условий.

При применении для освещения дороги и электропитания светосигнальных дорожных транспортных устройств источник питания расположен непосредственно на трассе и не требует дополнительных электрических подводок.

Система позволяет передавать информацию в реальном масштабе времени о частоте и скорости потока автомобилей, грузоподъемности транспортных средств, а также расстоянии между ними.

В октябре 2009 г. с участием фирмы MAATZ (Israeli National Roads Company) были проведены испытания образцов пьезогенераторов, установленных на участках скоростной дороги № 4. Под асфальтом на глубине 3 см в участок полотна длиной 100 м было установлено 500 000 пьезоэлементов, на участке 400 м — до 2 000 000.

Конструкция и технология изготовления пьезоэлектрических генераторов типа I PEG с системой сбора С. С. защищены четырьмя международными патентами, данные в открытой печати не опубликованы. Результаты проведенных исследований позволили фирме Innowattech приступить к разработке и реализации следующих проектов:

  • С участием национальной компании IRC (Israel Railways Company) на опытном участке близ станции Лод устанавливаются рельсы с вмонтированными в них пьезогенераторами. Проведенные предварительные расчеты показывают, что при интенсивном движении 10–20 поездов (с числом вагонов не менее 10) в час возможно получить до 200 кВт/ч, способных обеспечить электроснабжением до 300 индивидуальных домов.
  • Заключен контракт Start Road на проведение работ в период 2010–2013 гг. по установке пьезоэлектрических генераторов типа I PEG с аккумуляторной системой сбора на трассе Венеция–Триест. Пьезогенераторы закладываются на глубину до 3 см, через каждые 500 м осуществляется сбор и накопление электроэнергии с последующей ее передачей потребителям. Предварительные расчеты показывают, что при частоте движения 600 автомобилей в час на 1 км четырехполосного шоссе полотно с установленными под ним пьезогенераторами позволяет выработать до 1 МВт/ч, на двухполосном шоссе длиной 10 км — до 5 МВт/ч, что позволяет полностью обеспечить энергопитанием системы освещения дороги, электронные системы управления движением (светофоры, табло и т. д.). Сумма инвестиций итальянской компанией Impregilo составляет 225 млн евро.

В [13] приведены предварительные расчеты по созданию волновых электростанций с использованием преобразования механической энергии набегающих прибрежных волн в электрическую. Предварительные расчетно-экспериментальные данные показали низкую эффективность преобразования пьезогенератора: линейка многослойных пьезогенераторов шириной 10 см и толщиной 5 см обеспечивает получение 8–10 Вт с одного метра при воздействии волны с частотой 0,2–0,25 Гц и высотой до 1 м.

Перспективным направлением является создание пьезоконвертера на основе применения многослойных пьезоэлементов для бытовых устройств, которые преобразуют усилие нажатия человека на кнопку в электрическую энергию. При давлении 1 Н/см2 многослойный пьезоэлемент площадью 1 см2 и толщиной 2–3 мм генерирует напряжение 3–12 В, что достаточно для:

  • передачи сигнала с пульта дистанционного управления для измерения и индикации результатов;
  • передачи сигнала автомобильного брелока на охранную систему и систему сигнализации;
  • работы дистанционного радиозвонка для коттеджа (один из производителей таких бытовых звонков фирма Carradon Fredland отмечает, что выигрыш от применения пьезоконвертеров состоит даже не в снижении стоимости батареек, а прежде всего в возможности герметизации всего устройства);
  • работы безбатарейного устройства, настенного или мобильного, для включения и выключения освещения, которое может быть установлено в стену и не требует прокладки сетевой проводки, что создает дополнительные удобства для пользователей, повышает пожарную безопасность и позволяет экономить на строительно-монтажных работах по прокладке сетевых кабелей;
  • электромеханической блокировки электронного замка (с помощью пластиковой карточки при ее движении осуществляется передача энергии на микропроцессор, опознающий код карточки).

Мини-пьезогенераторы

В одном из последних обзоров [11] приведены различные варианты создания пьезо-электрических генераторов и наносистем для различных областей применения. Показана перспективность и применение изгибных пьезогенераторов в малогабаритных устройствах беспроводной электроники и устройствах коммуникации (телефоны сотовой связи, смартфоны), бытовой электромеханике и электротехнике.

В настоящее время интенсивно ведутся работы по созданию информационно-измерительных и управляющих систем, способных принимать и идентифицировать электромагнитные сигналы от беспроводных микромощных датчиков, встроенных в различные конструкции сетей передачи информации, расположенные в любых, в том числе и труднодоступных, местах, где возможности централизованного питания ограничены. Большое число элементов в таких информационных беспроводных сетях практически исключает возможность длительного, многолетнего поддержания их работоспособности путем регулярной или выборочной замены источника питания. Достижения в области создания маломощных СБИС наряду с низкими коэффициентами заполнения беспроводных датчиков уменьшают требования к питанию до диапазона десятков и сотен микроватт. Связанная с этим низкая потребляемая мощность открывает возможность обеспечения питанием сенсорных узлов посредством извлечения энергии из окружающей среды, устраняя необходимость в батареях и увеличивая срок службы до бесконечности. В таблице 1 приведено сравнение источников извлечения энергии и источников фиксированной энергии (батарей).

Таблица 1. Сравнение источников извлечения энергии и источников фиксированной энергии

Источники извлечения энергии Плотность энергии (мкВт/см3) при годовом сроке службы Плотность энергии (мкВт/см3) при 10-летнем сроке службы
Солнечная энергия (внешняя среда) 15 000 — прямые солнечные лучи,150 — пасмурный день
Солнечная энергия (внутренняя среда) 6
Вибрации (пьезоэлектрическое преобразование) 250
Вибрации (электростатическое преобразование) 50
Батареи (литиевые без перезарядки) 45 3,5
Батареи (литиевые с перезарядкой) 7 0

Данные таблицы показывают, что батареи являются приемлемым вариантом при коротких сроках службы. Для длительных сроков службы требуется другое решение. Солнечные элементы обеспечивают превосходную плотность энергии при прямом солнечном свете. Однако практически исключают выработку энергии в закрытых помещениях и зависят от погодных условий. Решение данного вопроса возможно при генерации электрической энергии непосредственно на месте расположения электронного маломощного устройства из энергии окружающей среды.

В последние годы появились публикации, посвященные генерации электрической энергии из неиспользованной энергии окружающей среды. Этот метод получил название «энергетическая очистка». Это одно из перспективных направлений, конечная задача которого — обеспечение практически неограниченной продолжительности работы маломощного электронного устройства.

В таблице 2 приведена информация об источниках вибрации.

Таблица 2. Информация об источниках вибрации

Источник вибраций Величина ускорения, м/с2 Частота основной моды колебаний, Гц
Отсек двигателя автомобиля 12 200
Основание трехосного станка 10 70
Корпус смесителя 6,4 121
Сушка белья 3,5 121
Приборная доска автомобиля 3 13
Небольшая СВЧ-печь 2,5 121
Компакт-диск портативного компьютера 0,6 75
Микровибрации зданий и сооружений 0,2 30–100

Механизмы преобразования

Существуют три основных механизма преобразования вибраций в электрическую энергию: электромагнитный, электростатический и пьезоэлектрический. В первом случае относительное перемещение между катушкой и магнитным полем вызывает протекание тока в катушке. Электростатический генератор состоит из двух проводников, разделенных диэлектриком, которые перемещаются относительно друг друга. При перемещении проводников энергия, хранящаяся в конденсаторе, меняется, обеспечивая, таким образом, механизм преобразования механической энергии в электрическую. В третьтем варианте преобразование механической энергии в электрическую происходит на основе пьезоэффекта в пьезокерамическом материале.

В таблице 3 приведено качественное сравнение особенностей указанных трех механизмов преобразования.

Таблица 3. Сравнение особенностей механизмов преобразования

Механизм Достоинства Недостатки
Пьезоэлектрический Не требуется источник напряжения, выходное напряжение 3–8 В Затруднена интеграция в микросхемы
Электростатический Простота интегрирования в микросхемы Необходим отдельный источник напряжения
Электромагнитный Не требуется источник напряжения Выходное напряжение 0,1–0,2 В

Из анализа данных, приведенных в таблице 3, следует, что наиболее перспективным является прямое преобразование механической энергии колебаний в электрическую, осуществляемое пьезокерамическим преобразователем. В качестве основного элемента преобразователя используются пьезоэлектрические датчики. Прямое преобразование механических колебаний конструкции в электрическую энергию будет наиболее эффективно при использовании гибких пьезоэлектрических датчиков — пьезобиморфов [1–4].

Принципиальная конструкция пьезоэлектрического микропреобразователя на основе пьезобиморфа показана на рис. 3.

Описание устройства и цепей измерения - фото 11 - изображение 11

Рис. 3. Принципиальная конструкция микропреобразователя на пьезобиморфе

В ряде работ [12–14] были проведены расчеты и оптимизация основных параметров, приведенных в таблице 4, а также установлены предельные ограничения, обусловленные механической прочностью конструкции из пьезокерамического материала.

Таблица 4. Основные параметры

Переменная Описание Ограничения
Габариты статической массы М
lm Длина hm <5 мм
hm Высота (lm+lb)wm <1 см2
wm Ширина (lm+lb)wb <1 см2
Конструктивные параметры пьезобиморфа
lb Длина балки le–lm <0
wb Ширина балки
le Длина электрода
tp Толщина пьезослоя
tsh Толщина стальной шайбы
Rload Сопротивление нагрузки

В работе [19] приведена оптимизация конструкций, изготовленных из пьезоэлектрических материалов: PZT, который является керамикой, и PVDF, который является полимером. Оптимальные параметры конструкции для двух различных материалов (с прокладкой и без) представлены в таблице 5.

Таблица 5. Оптимальные параметры конструкции для двух различных материалов

Параметры PZT PVDF
без прокладки с прокладкой без прокладки с прокладкой
lm, см 1,71 1,73 0,32 0,5
hm, см 0,5 0,5 0,5 0,5
wm, см 0,3 0,3 1,87 1,32
lb, см 1,62 1,6 0,21 0,25
wb, см 0,3 0,3 1,87 1,32
le, см 1,62 1,6 0,21 0,25
tp, мкм 365 267 75,6 42,9
tsh, мкм 0 182 0 135
Rload, кОм 355 264,5 6725 4825
Vr, В 13,1 12,1 50 50
Pout, мкВт 242 277 186 260

Значения входной вибрации были получены в малой СВЧ-печи на частоте 120 Гц. При моделировании для PZT использовался коэффициент пьезоэлектрической связи (k31), равный 0,12, основанный на измерениях биморфа со стальной центральной прокладкой. Для PVDF использовался коэффициент связи 0,08. Следует отметить, что использование оптимальных параметров PZT-биморфа привело к реализации очень длинного тонкого прибора. В зависимости от применения дополнительные индивидуальные ограничения могут быть внесены по общей длине и ширине прибора. Моделирование и эксперимент выявили наилучшее значение выходной мощности, равное приблизительно 250 мкВт. Выполненный анализ показал, что пьезоэлектрические преобразователи способны обеспечивать бóльшую мощность на единицу объема, чем емкостные. Также пьезоэлектрические преобразователи предпочтительнее еще и потому, что не требуют отдельного источника питания, и выходное напряжение рассматриваемых источников вибрации было в диапазоне 3–10 В.

В настоящее время реализуется Европейский исследовательский проект VIBES (Vibration Energy Scavenging, «Сбор вибрационной энергии»). Координатором является University of Southampton (School of Electronics and Computer Science), в состав команды входят также государственные исследовательские лаборатории EPFL, Tima, Tyndall, University of Southampton, Femto-st, фирмы Philips, MEMSCAP и METRAVIB [15]. Цель проекта — разработка и демонстрация микромощного генератора, способного использовать энергию от вибраций и движений окружающего пространства (зданий, машин, человека). Этот прибор будет производить электрическую энергию (в диапазоне мкВт) для обеспечения питанием автономных микросистем. В устройство должны входить маломощные контроллер и модуль ВЧ-связи, несколько MEMS-датчиков и микробатарея для хранения энергии (рис. 4).

Описание цепей измерения - фотография 12 - изображение 12

Рис. 4. Схема извлечения энергии

Прибор состоит из сейсмической массы, изготовленной из кремния, подсоединенного к подложке посредством гибкого кантилевера. Во время движения кантилевер испытывает нагрузку при сжатии и растяжении на верхней и нижней поверхностях. Пьезоэлектрический слой, расположенный в верхней части кантилевера, подвергается нагрузке, и, как следствие, некоторый электрический заряд появляется на поверхности. Этот заряд собирается металлическими электродами и подается на электрическую нагрузку или схему накопления энергии. Прибор изготовлен с использованием MEMS-технологии в кооперации с фирмой MEMSCAP. В процессе используется глубокое реактивное ионное травление обеих сторон со структурой «кремний-на-изоляторе» (SOI). Пьезоэлектрический слой был изготовлен из нитрида алюминия и в ближайшем будущем будет заменен на более толстый слой PZT (цирконат–титанат свинца). Модуль управления питанием предназначен для передачи энергии, производимой микромощным генератором, в модуль хранения энергии, например микробатарею. Для зарядки батареи требуется стабильный источник напряжения на постоянном токе со специфичным напряжением, зависящим от характеристик батареи. Также требуются операции по некоторому выпрямлению и повышению напряжения. Более того, эти операции должны выполняться с наивысшей эффективностью, а схема должна иметь очень малую потребляемую мощность. На рис. 5 приведена блок-схема модуля управления питанием. Схема извлечения энергии состоит из AC/DC-схемы для выпрямления напряжения и DC/DC-схемы для повышения напряжения. DC/DC-схема управляется цифровым контроллером, так как она является активной и адаптируется в зависимости от поступающего электрического сигнала и его частоты в целях обеспечения максимальной передачи энергии и зарядки батареи с наивысшей эффективностью. Как и ожидалось, генерируемая мощность является функцией амплитуды перемещения. Было установлено оптимальное значение нагрузочного сопротивления — 333 кОм, необходимое для выделения максимальной мощности с вибрирующей балки. Максимальная генерируемая мощность для амплитуды перемещения в 0,9 мм составила около 2 мкВт. Максимальное генерируемое напряжение составляет около 1,2 В.

Преимущественные характеристики устройств - фотография 13 - изображение 13

Рис. 5. Схема архитектуры автономной микросистемы

В Sandia National Laboratories (США) [16] ведутся работы по созданию ключевых компонентов безбатарейной микросенсорной системы, в которой осуществляется преобразование механической энергии от незначительных вибраций структур в электрическую энергию, которая приводит в действие систему. Пьезоэлектрический материал крепится к балке (кантилеверу). Всякий раз под воздействием нагрузки (например, когда высокое здание раскачивается от ветра или грузовик проходит по мосту) пьезоэлектрическая керамика генерирует небольшой заряд, всего 100 мкКл, который временно хранится в накопительном банке системы. Этого хранимого заряда достаточно для питания микросенсорной системы на долю секунды, что достаточно для осуществления простого считывания. Далее, если механическое напряжение в пьезоэлектрике превысит установленный порог, в результате может произойти сбой в структуре, например, маломощный микропроцессор может включиться. Сенсор выполнит измерение, передаст результат считывания на ВЧ-тэг flash-памяти, и будет осуществлен быстрый перевод микропроцессора в спящий режим.

Специалисты Sandia создали систему, которая обеспечивает питание микропроцессора, генерируемое от вибраций, и продемонстрировали метод хранения и поиска данных. Был показан только метод мониторинга критической инфраструктуры. Законченный прибор должен обеспечивать тепловые измерения, измерения механической нагрузки и отклонения растяжения, а также получение другой информации, которая может храниться в базе данных и считываться немедленно — например, в случае организации эвакуации из высокого здания. Это позволило бы решить задачу мониторинга высоких зданий, мостов, дамб, туннелей и других инфраструктур.

В [14] приведены результаты исследования по созданию микро-пьезоэлектрического генератора мощностью 375 мкВт, обеспечивающего работу радиопередатчика на частоте 1,9 ГГц при рабочем цикле 1,6%. В беспроводных системах прием/передача сигнала осуществляется в короткий период времени, затем устройство переходит в режим ожидания, с практически отсутствующим энергопотреблением. Типичный рабочий цикл передачи 1–2%, режим ожидания 98–99%.

Массовое применение микро-пьезогенераторов в настоящее время нашло в системах питания TPMS (система измерения давления в автомобильных шинах). Эта разработка [17] выполнена на фирме Morgan Electro Ceramics (Англия).

Другие возможные применения генератора для извлечения энергии касаются бытовых электронных изделий, таких как мобильные телефоны, mp3-проигрыватели, цифровые камеры, которые могут получать энергию от движения человека.

В таблице 6 приведены данные ожидаемого уровня электрической энергии от движения человеческого тела за счет преобразования механической энергии в электрическую.

Таблица 6. Данные ожидаемого уровня электрической энергии от движения человеческого тела

Активное действие Генерируемая механическая энергия Электрическая энергия Электрическая энергия, затрачиваемая на движение
Дыхание 0,83 Вт 0,091–0,42 Вт 0,5–2,5 Дж
Движения верхних конечностей 3 Вт 0,33–1,5 Вт 1,5–6,7 Дж
Движение пальцев 6,9–19 мВт 0,76–2,1 мВт 143–266 мкДж
Ходьба 67 Вт 5 Вт 8,3–14 Дж

Как видно из приведенной таблицы, наибольшие значения электрической энергии связаны с ходьбой. Из сравнения генерируемой и потребляемой энергии понятно, что источники питания, связанные с ходьбой или дыханием, могут быть использованы в любом носимом приборе. Пьезоэлектрические генераторы, основанные на движении верхних конечностей, в перспективе в состоянии обеспечивать питание GSM- и Bluetooth-устройств с низким энергопотреблением.

Некоторые примеры пьезоэлектрических генераторов, связанных с движением человека

В Массачусетском технологическом институте был проведен эксперимент с размещением пьезоэлектрических элементов под стандартной съемной стелькой спортивной обуви [18–19]. Энергия от давления пятки извлекается посредством расплющивания двух элементов, изготовленных из двух униморфов Thunder PZT/пружинная сталь, а энергия от сжатия/разжатия пальцев ног — посредством изгиба биморфной пластины, изготовленной из 16 пьезоэлектрических слоев. Ввиду ограниченной эффективности электромеханического преобразования среднее значение извлекаемой энергии оказалось небольшим (8,3 мВт на пятке и 1,3 мВт на пальцах во время ходьбы в среднем темпе). Тем не менее этого достаточно для транспорта 12-разрядного ID-кода в локальную сеть с помощью портативного передатчика.

Перспективные исследования и разработки проводит фирма Kyocera (Япония) в области создания альтернативного источника энергии — пьезогенератора для заряда встроенного аккумулятора перспективного мобильного телефона Eos при движении человека [20].

Фирма Nissan Electric (Япония) разработала и выпускает [21] модуль питания на основе пьезобиморфа, который вырабатывает энергию при ходьбе человека (мощность ≥20 мВт).

Фирма EnOcean сообщает о разработке безбатарейного радиовыключателя освещения [22].

В [23] приведены результаты исследований мини-пьезогенератора для питания имплантируемого протеза TKR при давлении с мощностью до 225 мкВт (мощность потребления системы питания микроконтроллера протеза TKP PIC161E872 — 50 мкВт).

В [24–25] приведены результаты исследований пьезогенератора, имплантируемого в протез колена человека для стимуляции роста костной ткани (мощность до 250 мкВт).

В Англии фирма Facility Architects совместно со Scott Wilson Group реализует проект Pacesetters по преобразованию механической энергии движения пассажиров на вокзале Виктория (за 60 мин. проходит 34 тыс человек) в источник электрической энергии. Авторы проекта полагают, что система может получить от каждого проходящего человека 3–4 Вт. Аналогичной разработкой занимаются специалисты японской железнодорожной компании JR-East совместно с учеными университета Keio. Созданная ими система может использоваться для подсчета пассажиров и одновременно для генерации электричества от прохождения людей через турникет. Эксперимент показал, что на вокзале в Сибуя в течение 6 часов работы система вырабатывает 1 Вт/ч.

Английская компания Pavegen Systems разработала пьезогенератор Pavegen, который преобразует энергию от давления шагов человека в электрическую (при деформации на 5 мм получается 2,1 Вт). Плата-генератор изготовлена из нержавеющей стали, покрытой резиной. Внешний корпус изготовлен из литого алюминия. Получаемая энергия накапливается в литьевых полимерных аккумуляторных батареях и может быть использована для питания осветительных приборов. Пять таких генераторов, установленных на оживленном участке тротуара, могут снабдить энергией освещения автобусную остановку на всю ночь. По подсчетам экономистов, срок окупаемости этого устройства — около года, в то время как заявленный ресурс составляет пять лет или 20 млн шагов.

Гриценко Анатолий, Никифоров Виктор, Щёголева Татьяна

Литература (в источнике):Состояние и перспективы развития пьезоэлектрических генераторов

Tags: копипаста

Пьезоэлектрический (пьезопленочный или пьезокерамический) громкоговоритель

Конструкционные особенности преобразователей - изображение 14 - изображение 14

Довольно распространенным видом нетрадиционных излучателей являются пьезокерамические (с недавнего времени — пьезопленочные) излучатели. Это электроакустические устройства воспроизведения звука, использующие обратный пьезоэлектрический эффект. Пьезоизлучатели широко используются в различных электронных устройствах — часах-будильниках, телефонных аппаратах, электронных игрушках, бытовой технике. Часто используются в качестве излучателей ультразвуковых колебаний в устройствах отпугивания грызунов и насекомых, увлажнителях воздуха, ультразвуковых «стиральных машинах».

Пьезокерамический излучатель состоит из металлической пластины, на которую нанесён слой пьезоэлектрической керамики, имеющий на внешней стороне токопроводящее напыление. Пластина и напыление являются двумя контактами. Для увеличения громкости звука к металлической пластине может крепиться небольшой рупор в виде металлического или пластикового купола с отверстием. В качестве рупора также может использоваться углубление в корпусе устройства, в котором используется пьезоизлучатель.

Принцип их действия основан на пьезоэлектрическом эффекте, открытом братьями Пьером и Жаком Кюри еще в 1880 году, и заключающемся в том, что в некоторых кристаллах (кварц, турмалин, сегнетова соль и др.) под действием приложенных механических сил на их гранях образуются электрические заряды. В зависимости от вида кристалла, заряды могут появиться и при сдвиге, изгибе и кручении. Кроме вышеописанного «прямого» эффекта существует и обратный эффект (который был теоретически предсказан в 1881 году Липманом и экспериментально подтвержден в работах Кюри). Если приложить электрическое напряжение к обкладкам пьезокристалла, то кристалл начнет деформироваться: удлиняться, изгибаться, скручиваться и т. д. Идея использовать такие кристаллы в конструкции электроакустических преобразователей появилась очень давно и была реализована в период 1920-1940 годов в звукоснимателях, микрофонах, акселерометрах, ультраакустических преобразователях и пр.

Пьезоизлучатель также может использоваться в качестве пьезоэлектрического микрофона или датчика.

Отечественные пьезоизлучатели имеют обозначения вида ЗП и номера серии. Наиболее распространённые в отечественной бытовой технике излучатели – ЗП-1 и ЗП-3.

Естественно, что на протяжении длительного периода времени изучались возможности использования этого эффекта и в акустических излучателях в звуковом диапазоне частот. В период 1940-1965 годов различные группы исследователей в Америке, Японии и России вели интенсивные исследования по созданию нового поколения пьезоматериалов с высокими значениями пьезомодуля. Наиболее распространенные для применения в аудиоаппаратуре пьезокерамические материалы были созданы на основе титаната бария и цирконата-титаната свинца со стронцием и ниобием. Наиболее известные марки пьезокерамики, используемые в излучателях: PZT-5 (США), PCM-5 (Япония), P1-60 (Франция). Отечественная керамика с аналогичными параметрами — ЦТС-19.

Для увеличения чувствительности обычно используется биморфный элемент, то есть конструкция, состоящая из двух прочно склеенных пластин пьезокерамики, работающих на поперечном пьезоэффекте и возбуждаемых противофазно. Интерес к созданию громкоговорителей на основе пьезокерамики (судя по огромному количеству патентов) был чрезвычайно высок (в основном для высокочастотных громкоговорителей и громкоговорителей для оповещения). Разработчиков привлекала необычайная простота конструкции, отсутствие магнитных цепей, довольно высокий уровень чувствительности, стабильность параметров и т.д. Однако пьезокристаллический элемент, используемый для возбуждения диафрагмы, имеет ярко выраженную резонансную характеристику, поэтому применение его для возбуждения излучателей в широком диапазоне частот потребовало многолетних работ по отработке конструкции.

Прежде всего, для проектирования широкополосных излучателей пьезоэлемент должен быть сконструирован таким образом, чтобы его резонансная частота лежала на нижней границе рабочего диапазона. Для снижения резонансной частоты необходимо увеличивать радиус и уменьшать толщину. Увеличивать размеры не позволяет общая конструкция высокочастотных излучателей, а над снижением толщины и подбором специальных конфигураций пьезоэлементов в настоящее время продолжают работать многие фирмы. Необходимо отметить также, что излучатели с пьезоэлементом имеют емкостной характер нагрузки и требуют применения повышающего трансформатора.

Модели с пьезоизлучателями

Несмотря на указанные проблемы, только в период 80-90 годов примерно 43 фирмы выпускали более ста моделей акустических систем с высокочастотными пьезоизлучателями. К числу таких фирм относятся Motorola, Pioneer, Gemini, Celestion и др.

Бесспорным лидером в создании высококачественных пьезоизлучателей, которые нашли широкое применение во многих типах акустических систем целого ряда других фирм, была и остается компания Motorola. Многолетние исследования (что подтверждают многочисленные патенты) позволили им выбрать конструкцию, обеспечивающую излучение в достаточно широком диапазоне частот. Излучатель состоит из биморфного пьезокерамического элемента на металлической подложке, демпфирующих элементов, опорного кольца диффузора и диффузородержателя.

Такой излучатель нагружается на рупор специальной формы. С помощью рупора удается согласовать высокий механический импеданс пьезокерамического вибратора с низким импедансом воздушной среды, что позволяет повысить эффективность излучения. Фирма Motorola после многочисленных экспериментов предложила широкогорлую конструкцию рупора (диаметр горла которого совпадает с диаметром диафрагмы излучателя), но для повышения эффективности его излучения разработала специальную форму экспоненциального рупора с множеством продольных ребер внутри него.

Наряду с пьезокерамическими излучателями, в 70-е годы, после создания новых видов материалов — пьезоэлектрических полимеров, стало развиваться особое направление в создании громкоговорителей, использующих этот эффект. В 1969 году японский физик Н. Камаи открыл пьезоэффект у поливинилиденфторидной пленки (ПВДФ). ПВДФ является высокомолекулярным, высококристаллическим полимером, отличающимся высокой прочностью, жесткостью, стойкостью к износу и др. Физические свойства его зависят от типа кристаллической структуры. Процесс, который придает высокополимерным пленочным материалам пьезоэлектрические свойства, имеет сложную технологию.

Если пленка растягивается в одном направлении, то она обладает разными пьезомодулями в разных направлениях и называется одноосноориентированной. На первом этапе была отработана технология изготовления именно таких пленок. Если теперь такую пленку изогнуть и закрепить ее концы, то при приложении переменного электрического напряжения перпендикулярно ее поверхности она начнет деформироваться, пульсировать и излучать звук.

Первые образцы высокочастотных излучателей в виде пленки, свернутой и натянутой на цилиндр, создала фирма Pioneer (Япония). На их базе компания разработала и выпускала на протяжении длительного времени линейку акустических систем HPM-40, HPM-60, HPM-100, HPM-150, HPM-200, HPM-1100. Несомненным преимуществом таких излучателей является простота конструкции и отсутствие дорогостоящих магнитов. К недостаткам можно отнести емкостный характер сопротивления и необходимость применения повышающего трансформатора.

Особенности приборов, измеряющих вибрации - фотография 15 - изображение 15

В 80-е годы в Японии была отработана надежная технология поляризации двуосноориентированных пленок с одинаковым пьезомодулем в двух направлениях. Это дало возможность фирмам Audax и Brandt Electronique разработать и в 1980 году представить на выставке в Париже акустические системы с купольными пьезопленочными громкоговорителями. Конструкция одного из них показана на рисунке ниже. Громкоговоритель содержит изогнутую пьезопленку (1), демпфирующую прокладку (2) и специальную сетку (3). Параметры представленных высокочастотных громкоговорителей оказались следующими: диапазон воспроизводимых частот 5-20 кГц с неравномерностью +/-1 дБ, чувствительность 90 дБ/Вт/м, максимальное звуковое давление 110 дБ.

Альтернативный источник энергии посредством преобразователей - фото 16 - изображение 16

Работы по совершенствованию параметров двуосноориентированной пьезопленки продолжались в Германии, Японии, США и других странах все последние годы. Это дало возможность фирме Audax выпустить новое поколение высокочастотных излучателей и акустических систем с ними. Представителем этого нового поколения является высокочастотный громкоговоритель HD3P. В качестве материала для диафрагмы используется пьезополимерная пленка, покрытая с обеих сторон золотом (методом вакуумного напыления). Пленка натянута в виде эллиптического купола и закреплена на эллиптическом кольце. За диафрагмой находится закрытая камера с воздухом под некоторым давлением, поддерживающим форму купола. К электродам на обеих поверхностях диафрагмы подводится сигнал, под действием которого диафрагма изгибается и излучает звук. Громкоговоритель, естественно, не имеет ни магнитной цепи, ни звуковой катушки. Поскольку движущая масса диафрагмы примерно в двадцать раз меньше, чем масса электродинамического громкоговорителя соответствующего размера, то переходные искажения очень малы, звук необычайно чистый и прозрачный.

Ультразвуковой пьезоэлектрический преобразователь - изображение 17 - изображение 17

На базе этого громкоговорителя была создана новая линейка контрольных агрегатов. В частности, фирма World Audio выпустила небольшие студийные мониторы ближнего поля KLS10 с использованием высокочастотного пьезопленочного излучателя HD3P фирмы Audax. Агрегат относительно недорог, но при этом обладает хорошими параметрами: мощность 60 Вт, чувствительность 89 дБ/Вт/м, диапазон 40-30000 Гц, габариты 190 х 310 х 230 мм. Контрольный агрегат KLS3 Gold использует последнюю разработку фирмы Audax: эллиптический высокочастотный пьезогромкоговоритель. Общий объем — 60 дм3, чувствительность 90 дБ/Вт/м. По мнению экспертов, агрегат имеет необычайно чистые и прозрачные высокие частоты благодаря применению пьезоизлучателя.

Области применения пьезоэлектрического преобразователя - фото 18 - изображение 18

Неожиданное развитие за последние годы получило направление создания пьезогромкоговорителей в связи с разработкой "мягкой" пьезокерамики, из которой можно формовать диафрагмы и элементы громкоговорителей разных конфигураций. Наибольших успехов в этом направлении добился Междисциплинарный Исследовательский Центр при университете в Бирмингеме (Великобритания), где на протяжении многих лет велись работы по созданию мягких керамических материалов PZT (толстопленочных) и разнообразных изделий из них. Успехи технологии позволили создать биморфные пьезокерамические элементы самых разнообразных конструкций: в виде сферических куполов, пружин и др.

Недостатки преобразователей - изображение 19 - изображение 19

Появление таких пьезоэлементов позволило приступить к разработке новых конструкций излучателей, в частности, создать низкочастотный громкоговоритель, где вместо звуковой катушки использован пьезоэлемент.

Основной принцип работы акселерометров на пьезоэлементах - изображение 20 - изображение 20

Перспективы пьезоизлучателей

Анализ процессов создания пьезоизлучателей, работающих в звуковом диапазоне частот, позволяет выявить три устойчивые тенденции в их развитии:

  1. создание пьезокерамических биморфных элементов и разработка конструкций рупорных высокочастотных громкоговорителей на их основе (лидером в этом направлении является фирма Motorola, с использованием громкоговорителей которой различными компаниями создана целая линейка акустических систем);
  2. разработка пьезопленочных высокочастотных излучателей и акустических систем с их использованием (ведущими являются фирмы Pioneer и Audax);
  3. создание нового поколения мягких пьезокерамических материалов (толстых пьезопленок PZT) и отработка на их основе конструкций не только высокочастотных, но и низкочастотных громкоговорителей.

Большие достижения в технологии пьезокерамических материалов и их широкое использование в разных областях техники позволяют ожидать значительного прогресса в развитии излучателей на их основе.

Наряду с вышеперечисленными видами излучателей проводятся работы по созданию плазменных, пневматических и других видов громкоговорителей, но они еще не выпускаются промышленно. В последние годы большое внимание уделяется созданию цифровых излучателей (своего рода акустического ЦАП), но пока эта работа находится на стадии научных исследований.

Преобразователь пьезоэлектрический: назначение и применение

Маленькая такая) - фотография 21 - изображение 21

Эти преобразователи относятся к подгруппе генераторных, в их основе посредством механики накапливаются электрические заряды. В результате выделяют следующую взаимосвязь: Q = d· P. В этом случае d является пьезомодулем, а P – усилием. Как правило, материалом выступает кварц, турмалин, смеси отжига, барий, свинец. Чтобы спроектировать пьезоэлектрический преобразователь, необходимо использовать схемы нагрузки: сжатие, изгиб, сдвиг, растяжение.

Прямой и обратный пьезоэффект

Для прямого эффекта характерно следующее: используемый кристаллический материал образует решетку за счет заряженных ионов, расположенных в определенном порядке. В процессе разноименные частицы чередуются и производят взаимную компенсацию, в результате получается электрическая нейтральность. Кристаллы имеют особенности, которые обозначены следующим образом:

  • симметрия по отношению к оси;
  • с учетом предыдущего вида проявляется решетка с ионами, которые чередуются и компенсируются.

пьезоэлементот зажигалки - изображение 22 - изображение 22

Если используемый материал в процессе направлен на силу Fx, то он деформируется, расстояние между положительными и отрицательными зарядами меняется, и происходит электризация направления в заданной оси. Все это выражается в формуле q = d11Fx и является пропорциональным для силы. Коэффициент связан с веществом и его состоянием, имеет название – пьезоэлектрический модуль. Индексы определены силой и гранью, но если изменить направление, то эффект станет иным.

Пьезоэлектрический преобразователь при прямом процессе электризует кристаллы под воздействием внешних сил. Этот эффект возникает при влиянии веществ, являющихся электриками. Чтобы изготовить измерительные приборы, понадобятся кристаллы кварца. То есть принцип действия пьезоэлектрического преобразователя следующий: при прямом эффекте воздействие осуществляется через механику, а при обратном происходит деформация кристаллов.

Дополнительные пьезоэффекты

Кристалл может поляризоваться при воздействии на пластинку сил на осях X, Y. Если действует сила Fx , то проявляется продольный эффект, а когда Fy – поперечный, при Fz зарядов не возникает. Кварцевый кристалл располагается на трех осях координат. Чтобы использовать пьезоэлектрические измерительные преобразователи, необходимо вырезать пластинку, которая укажет на эффект. Она имеет следующее описание:

  • высокая прочность;
  • напряжение допускается до 108 Н/м2, благодаря этому возможны большие измеряемые силы;
  • жесткость и упругость;
  • минимальное трение внутри;
  • стабильность, которая не меняется;
  • максимальная добротность изготовленного материала.

Пьезоэлектрические преобразователи - фотография 23 - изображение 23

Кварцевые пластинки применяются только в преобразователях, которые измеряют давление и силу. С учетом твердости материал сложно обработать, поэтому из него создают простую форму. Модуль постоянен при неизменяемой температуре. Если она увеличивается, то в этом случае происходит уменьшение модуля. Пьезоэлектрические свойства исчезают при температуре в 573 градуса по Цельсию.

Описание устройства и цепей измерения

Пьезоэлектрический преобразователь давления имеет следующую структуру:

  • мембрана, которая является дном корпуса;
  • обкладка снаружи заземлена, а средняя изолируется кварцем;
  • пластины имеют высокое сопротивление, соединены параллельно;
  • фольгу и внутреннюю жилу кабеля скрепляют в отверстии, закрывающемся крышкой.

Мощность на выходе – минимальна, в связи с этим предусматривают усилитель с большим сопротивлением. По сути, напряжение зависит от емкости цепи входа. Характеристики преобразователя указывают на чувствительность и емкость. В основном это заряд и собственные показатели устройства. Если рассчитать суммарно, то получится следующая выходная мощность: Sq = q/F или Uxx = d11·F/Co.

Чтобы расширить диапазон частоты, необходимо измеряемые низкие переменные увеличить в сторону постоянной цепи времени. Подобное действие легко осуществить с помощью включения конденсаторов, которые расположены параллельно с устройством. Правда при этом напряжение выхода снизится. Сопротивление, которое было увеличено, расширит диапазон без утрат чувствительности. Но для его повышения необходимы улучшенные изоляционные качества и усилители с высокоомным входом.

Описание цепей измерения

Удельное и поверхностное сопротивления определяют собственное, причем основная составляющая для кварца выше, поэтому пьезоэлектрический преобразователь необходимо герметизировать. В результате повышаются качества, и поверхность защищается от влаги и грязи. Цепи измерения датчиков создавались как высокоомные усилители, в основе которых использовались выходной каскад на полевом транзисторе и неинвертирующий усилитель с операционным устройством. Напряжение поступает на вход и выход.

Преобразователь пьезоэлектрический: назначение и применение - фото 24 - изображение 24

Однако в этом устаревшем пьезоэлектрическом преобразователе были недостатки:

  • зависимость напряжения выхода и чувствительность по отношению к объему датчика;
  • нестабильная емкость, которая меняется из-за температурных условий.

Напряжение усилителя и чувствительность определяются допустимой погрешностью, если дополнить включенный стабильный объем С1. Формула: ys = (ΔCo + ΔCk)/(Co+Ck +C1). После преобразования получаем: S=Ubx/F. Если коэффициент увеличивается, соответственно, и эти переменные возрастают. Для измерительной цепи характерно:

  • постоянная линия времени;
  • сопротивление R определено входным усилением, изоляцией датчиков, кабелей, и R3;
  • МДП-транзисторы сильнее по сравнению с полевыми устройствами, однако имеют высокий уровень шума;
  • R3 стабилизирует напряжение, его значение высчитывается как ~ 1011 Ом.

Анализируя последнюю переменную, можно предположить, что постоянная линия времени следующая: t ≤ 1c. Сегодня устройства могут использовать с усилителями напряжения пьезоэлектрические датчики для заряда.

Преимущественные характеристики устройств

Пьезоэлектрический преобразователь имеет следующие достоинства:

  • простота конструкционной сборки;
  • габариты;
  • надежность;
  • преобразование напряжения механики в электрический заряд;
  • переменные величины, которые можно быстро измерить.

В случае с материалом вроде кварца, который близок к идеальному состоянию тела, преобразование механики в заряд электрики возможно с минимальной погрешностью от -4 до -6. Однако развитие высокоточной техники улучшило способность реализовать точность без потерь. В результате можно прийти к выводу, что для измерителей сил, давления и прочих элементов наиболее подходящими являются эти пьезоэлектрические преобразователи.

Прямой и обратный пьезоэффект - фотография 25 - изображение 25

ПЭП ускорения имеет следующую конструкцию:

  • все материалы крепятся к титановому основанию;
  • два одновременно включенных пьезоэлемента из кварца;
  • высокоплотная инерционная масса предназначена для минимальных габаритов;
  • снятие сигнала посредством латунной фольги;
  • она, в свою очередь, соединена с кабелем, который припаивается;
  • датчик закрыт крышкой, навинченной в основании;
  • чтобы укрепить измеритель на объекте, нарезают резьбу.

Невзирая на массу, датчик достаточно стабилен и плотен. Работает в диапазоне 150 м/с2.

Конструкционные особенности преобразователей

Если необходимо изготовить датчик акселерометра, то важно правильно прикрепить пьезочувствительные пластины к основанию. Это действие осуществляется паянием. Кабель должен соответствовать следующим требованиям:

  • изоляционное сопротивление должно быть высоким;
  • экран размещен рядом с жилой;
  • антивибрационность;
  • гибкость.

То есть на вход усилителя не должна производиться тряска кабеля. Измерительная цепь создается симметрично, чтобы не возникало помех. В датчике связь несимметричная, сопротивление выводов и корпуса соединено таким образом, что получается изоляция внешних пластин. Чтобы добиться нужного результата, требуется измеритель выполнить из нечетного количества материалов, которые используются в процессе. Элементы прижимаются к усилителю сквозь отверстия в центральной части и через изоляторы, которые привинчены к корпусу.

Особенности приборов, измеряющих вибрации

Чтобы увеличить чувствительность измерительного прибора, необходимо применить пьезоэлементы с высоким модулем. Этот материал укладывают параллельно в ряд и соединяют металлическими прокладками и пластинами. Для подобного эффекта еще могут применяться вещества, которые работают на изгиб. Однако они имеют низкую частоту и уступают механике сжатия.

Материал может быть биморфным, его обычно собирают последовательно или параллельно, все зависит от положительно расположенных осей. Как правило, это две пластины. Если учитывать нейтральный слой, то над ним вместо пьезоэлемента может использоваться накладка из металла со средней толщиной.

Описание цепей измерения - изображение 26 - изображение 26

Чтобы измерить сигналы, которые двигаются достаточно медленно, необходимо сделать следующее:

  • пьезопреобразователь включают в автогенератор;
  • кристалл находится на резонансной частоте;
  • как только произойдет нагрузка, показатели изменятся.

Сегодня пьезоакселерометры – усовершенствованные приборы, которые могут быть высокочастотными, с сильной чувствительностью.

Альтернативный источник энергии посредством преобразователей

Одним из знаменитых и неисчерпаемых средств получения электричества является энергия волн. Такие станции монтируют непосредственно в водную среду. Это явление связано с солнечными лучами, которые нагревают массу воздуха, благодаря чему возникают волны. Вал данного явления имеет энергоемкость, которая определяется по силе ветра, ширине воздушных фронтов, продолжительности порывов.

Значение может колебаться на мелководье или достигать 100 кВт на один метр. Пьезоэлектрический преобразователь энергии волн работает по определенному принципу. Уровень воды поднимается посредством волны, в процессе воздух выдавливается из сосуда. Затем потоки пропускаются реверсирующейся турбиной. Агрегат вращается по определенному направлению, вне зависимости от движения волн.

Преимущественные характеристики устройств - фотография 27 - изображение 27

Этот аппарат имеет положительную характеристику. До сегодняшнего дня совершенствование конструкции не прогнозируется, потому что эффективность и принцип работы доказаны всеми существующими путями. В процессе технического прогресса, возможно, будут построены плавучие станции.

Ультразвуковой пьезоэлектрический преобразователь

Этот прибор устроен таким образом, что не требует дополнительных настроек. Он снабжен блоком памяти, который выдает технический результат. Относится к контрольно-измерительным аппаратам. Подобные устройства отличаются по типу, техническим характеристикам, которые составляются на основе данных о конструкции и предназначении с минимальными погрешностями. Все требования учитываются на основе конструкции.

Для всех подобных аппаратов предусмотрена стандартная схема создания: дефектоскоп, корпус, электроды, главный элемент, который скрепляют с основанием, жила, фольга и другие материалы. Ультразвуковой пьезоэлектрический преобразователь является полезной моделью. Он позволяет получать данные непосредственно с помощью звука, установленного на основании устройства.

Области применения пьезоэлектрического преобразователя

Устройства с прямым эффектом используются в приборах, которые измеряют силу, давление, ускорение. У них высокий уровень частоты и жесткости. Аппараты с обратной связью применяют в ультразвуковых колебаниях, преобразовании напряжения в деформацию, уравновешивания. Если одновременно учитывают оба эффекта, то этот вариант подходит для пьезорезонаторов, которые преобразуют один вид энергии в другой достаточно быстро.

Конструкционные особенности преобразователей - фотография 28 - изображение 28

Положительные устройства, включенные в обратное направление, работают на автоматических колебаниях и применяются в генераторах. Область их применения обширна, так как они имеют высокую стабильность при правильном создании. Зачастую для достижения нужного эффекта и получения верных сведений используют несколько пьезорезонаторов.

Недостатки преобразователей

В данных устройствах присутствует огромное количество положительных сторон. Однако они имеют и отрицательные черты:

  • сопротивление на выходе – максимальное;
  • измерительные схемы и кабели должны быть созданы на основе жестких требований и рекомендаций.

Расчет пьезоэлектрического преобразователя изначально выводит формулу уравнения для резонансной частоты: Fp = 0.24 ·c·. Толщина пластины: h = Fp · a2 / 0.24 · c = 35 · 103 · 25 · 10-6/ 0.24 · 2900 = 1.257 · 10-3m. Энергетические характеристики высчитываются так: Wак = Wак.уд · S = 40 · 4.53 · 10-3.

Основной принцип работы акселерометров на пьезоэлементах

Особенности приборов, измеряющих вибрации - фото 29 - изображение 29

Основной принцип работы конденсаторных акселерометров.

На сегодняшний день наиболее популярны датчики движения, основанные на конденсаторном принципе. Подвижная часть системы – классический грузик на подвесах. При наличии ускорения грузик смещается относительно неподвижной части акселерометра. Обкладка конденсатора, прикрепленная к грузику, смещается относительно обкладки на неподвижной части. Емкость меняется, при неизменном заряде меняется напряжение – это изменение можно измерить и рассчитать смещение грузика. Откуда, зная его массу и параметры подвеса, легко найти и искомое ускорение.

Практически МЭМС-акселерометры устроены таким образом, что отделить друг от друга составные части – грузик, подвес, корпус и обкладки конденсатора – не просто. В большинстве случаев в одной детали удается комбинировать сразу несколько предметов.

Относительно простой, но чрезвычайно миниатюрный и чувствительный MEMS-акселерометр разработки Sandia Labs

Современные МЭМС-гироскопы часто устроены идентично акселерометрам. При этом значения ускорений по осям пересчитываются в значения углов поворота. Конструкция примерно та же, но на выходе - другая величина.

Помимо конденсаторных датчиков, существуют MEMS-акселерометры, использующие иные принципы. Например, датчики, основанные на пьезоэффекте. Вместо смещения обкладок конденсатора, в акселерометрах такого типа происходит давление грузика на пьезокристалл. Основной принцип тот же, что и в пьезозажигалках – под воздействием деформации пьезоэлемент вырабатывает ток. Из значения напряжения, зная параметры системы, можно найти силу, с которой грузик давит на кристалл – и, соответственно, рассчитать искомое ускорение.

Справка. Пьезоэлектрический эффект заключается в изменении линейных размеров некоторых материалов в электрическом, а пьезомагнитный эффект – во внешнем магнитном поле. Оба пьезоэффекта полностью обратимы: при деформации пьезоэлемента на его концах появляется электрический заряд или магнитное поле (прямой пьезоэффект), а при приложении электрического и или магнитного поля проявляется изменение его линейных размеров (обратный пьезоэффект).

Одни из самых ярких представителей устройств с MEMS-актюаторами – DLP-проекторы (DLP – Digital Light Processing). В основе этих проекторов лежит относительно крупная – по общему размеру готового чипа – микроэлектромеханическая система под названием DMD (Digital Micromirror Device, цифровое микрозеркальное устройство).

DMD-чип в сборе. DMD-чип представляет собой матрицу микрозеркал. Каждое микрозеркало – крошечная алюминиевая пластинка размером порядка 10x10 микрон.

Некоторые применения МЭМС технологий:

  • Акселерометры – миниатюрные устройства для измерения ускорений; их широко используют в устройствах, контролирующих раскрытие подушек безопасности в автомобилях;
  • Микрозеркала. Угол наклона каждого зеркала независимо управляется МЭМС-устройством, благодаря чему можно либо отражать либо блокировать свет. Подобные системы используются в проекторах для графических презентаций. Совмещение акселерометров на основе МЭМС для регистрации внешних вибраций с МЭМС-микрозеркалами для коррекции лазерного луча, позволило разработать принтеры с чрезвычайно высоким разрешением печати.
  • Микрокапиллярные устройства. Кремниевые чипы с микроскопическими каналами могут использоваться для адресной доставки лекарственных препаратов.
  • Биомедицинские имплантанты. Недавно были созданы кремниевые МЭМС-устройства содержащие звуковой сенсор и микропроцессор, который раскладывает звуковые волны на Фурье-гармоники. Устройство имплантируется непосредственно в человеческое ухо, после чего полученные Фурье-компоненты напрямую передаются слуховому нерву, благодаря чему глухие люди получают возможность слышать. В настоящее время разрабатываются аналогичные устройства для восстановления зрения.

Понятие о литографии

Литографией называют совокупность фото- и физико-химических процессов, используемых для послойного формирования топологического рисунка интегральных схем (ИС) и наноструктур. Конечная цель литографического процесса – получение контактной маски для формирования одного из топологических слоев изготавливаемой структуры. Литография основана на использовании высокомолекулярных соединений – резистов, обладающих способностью изменять свои свойства под действием определенного вида излучения. В зависимости от вида излучения и типа резиста различают оптическую (фото), рентгеновскую, электронную и ионную литографии. В ФЛ ультрафиолетовое излучение проходит через маску и фокусируется на кремниевой пластине с резистом. Под действием УФИ, прошедшего через прозрачные места на маске, светочувствительный слой (резист) приобретает способность к растворению и затем удаляется органическими растворителями.

Основные этапы фотолитографии на пластине кремния:

  • нанесение на пластину слоя диэлектрика, обычно диоксида кремния SiO2;
  • нанесение на слой диэлектрика фоторезиста;
  • наложение фотошаблона, который отображает соответствующую часть ИМС, например размеры, форму и взаимное расположение эмиттеров всех транзисторов, которые должны быть сформированы на пластине; в таком случае шаблон представляет собой непрозрачную пластину с прозрачными участками, дублирующими форму и местоположение будущих эмиттеров;
  • экспонирование фоторезиста;
  • удаление фотошаблона;
  • проявление (травление) фоторезиста; участки, подвергнутые воздействию света, вытравливаются до слоя окисла;
  • вытравливание отверстий («окон») в слое диэлектрика через отверстия в фоторезисте;
  • удаление фоторезиста.

НЭМС

Современные ученые работают над созданием наносистем, которые являлись бы аналогами электромоторов. Эти объекты получили название «наноэлектромеханические системы» или НЭМС, поскольку они развивают наносилы под действием электрического поля или светы, или, наоборот, при приложении внешней силы создают электромагнитный отклик.

При уменьшении размеров объектов отношение их площади поверхности к объему заметно возрастает, что приводит к значительному увеличению вклада сил трения в механическое поведение наносистем и к доминированию сил трения над силами инерции. Одна из задач – теоретическое описание механического поведения наносистем.

Две основные тенденции в создании НЭМС: миниатюризация существующих МЭМС (концепция «сверху-вниз») и разработка принципиально новых молекулярных двигателей и молекулярных электромеханических устройств (концепция «снизу-вверх»). Первый подход связан со сложностями, возникающими из-за ограниченного разрешения методов, используемых для создания МЭМС. Эти методы проблематично использовать для создания нанообъектов. Второй подход связан с использованием отдельных молекул и функциональных групп. В частности, описана возможность передачи вращения с одной нанотрубки на другую, а также создание механического осциллятора из группы концентрических нанотрубок.

Справка. Углеродная нанотрубка (УНТ) получается из гексагональной углеродной сетки. В зависимости от того, как из графитовой плоскости «вырезать полоску» и как ее свернуть, диаметр трубки может варьироваться от 0.4 до 100 нм, а длина – от 1 до 100 мкм. Имеют высокую прочность на растяжение и изгиб, высокую проводимость, необычные магнитные и оптические свойства. Свойства зависят от структуры нанотрубки. Например, вектор свертки графитовой плоскости определяет электронную структуру НТ: будет ли она металлом или полупроводником.

Ярким примером НЭМС являются наномашины, способные ездить под действием внешнего электрического поля или света.

Первый наноавтомобиль, способный ездить по поверхности золота, - этот большая органическая молекула, состоящая из почти 300 атомов трех видов - С, O, H. В качестве колес использованы четыре молекулы фуллерена С60, которые связаны химическими связями с каркасом машины.

Справка. Фуллерены – это изолированные молекулы новой аллотропной модификации углерода. Форма фуллеренов – полый сфероид, грани которого образуют пяти- и шестиугольники. Наибольший интерес представляет фуллерен С60 ввиду его наибольшей стабильности и высокой симметрии.

Именно уникальная сферическая форма молекул фуллерена обеспечивает настоящее вращение колес наноавтомобиля вокруг собственной оси.

Движение осуществляется обычным нагреванием всей системы до 2000 С, что вызывает вращение фуллеренов на химических связях, соединяющих их с рамой машины. От вращения четырех молекул наносистема приходит в движение и может катиться по плоской золотой поверхности. Проблема – машина неуправляема. Решение – на каждую машину нужно поставить молекулярный наномотор – наноактюатор.

В зависимости от выбора принципа работы наноустройств подвод энергии к МЭМС или НЭМС можем осуществляться электрически, термически или химически.

Электрические наноактюаторы управляются наиболее просто – приложением внешней разности потенциалов или электромагнитного поля. Простейшие типы таких актюаторов включают пьезодвигатели и электростатические актюаторы на основе плоскопараллельных конденсаторов, однако возможны и более сложные и интересные решения (см. после справки).

Справка. Пьезодвигателями называют такие системы, в которых механическое перемещение осуществляется за счет пьезоэлектрического или пьезомагнитного эффекта. Пьезодвигатели работают на обратном пьезоэффекте. Наибольшее распространение получили пьезоэлектрические двигатели. Пьезодвигатели используются в системах нанопозиционирования, НЭМС, наноактюаторах, нановесах, наносенсорах и кантилеверах атомно-силовых микроскопов.

Создан электрический наноактюатор, похожий на обычный электромотор. Вращающей частью (ротором) является крошечная золотая пластинка размером около 250 нм, которая закреплена на оси, - углеродной нанотрубке. Вокруг ротора расположено три электрода, на которые подается переменное электрическое напряжение с амплитудой около 5 В, в результате чего наномотор вращается.Тепловые актюаторы используют эффект теплового расширения или деформации контакта двух материалов за счет различия в коэффициентах теплового расширения. Такие актюаторы могут создавать достаточно большие силы, однако общая эффективность этих устройств обычно не превышает 0.1%.Химическое управление наноактюаторами осуществляется при помощи изменения состава окружающей среды, ее кислотности и других факторов. Иногда используют свет, который при воздействии на молекулы приводит актюатор в движение.Среди разнообразных конструкций молекулярных моторов выбор был сделан в пользу модели, разработанной голландским инженером Феринга. Подвижная лопасть установлена в центре рамы наноавтомобиля. Под действием излучения (использовался свет с длиной волны 365 нм) лопасть начинает вращаться и, отталкиваясь от золотой подложки, приводит наномашину в движение.При установке наноактюатора возникли сложности. В частности, выяснилось, что мотор Феринга не работает в присутствии фуллеренов. Поэтому колеса пришлось заменить на молекулы р-карборанов, содержащие атомы С, Н и В. Эксперименты показали, что такие наноавтомобили действительно могут ездить под действием света, что является огромным достижением НТ. Очевидно, требуются усовершенствования. Например, лопастной нанодвигатель может вращаться только в одну сторону, поэтому пока наномашины умеют ездить только вперед.

Ожидается, что НЭМС произведут революцию в области метрологии, особенно при измерении очень малых сил и смещений на молекулярном уровне. Собственная частота колебаний механической системы:

ω0 ~ (kэфф/mэфф)1/2,

где kэфф – эффективная жесткость, а mэфф – эффективная масса системы. При уменьшении линейного размера l устройства при сохранении его формы частота ω0 будет увеличиваться, так как kэфф ~ l, а mэфф ~ l3. При этом высокие значения ω0 соответствуют высоким скоростям отклика системы на внешние силы, что позволяет создавать на основе НЭМС чрезвычайно чувствительные измерительные устройства. В настоящее время на основе НЭМС созданы нанорезонаторы с фундаментальной частотой колебаний выше 10ГГц, что казалось недостижимым. Такие резонаторы применяются в качестве кантилеверов сканирующей зондовой микроскопии.

Маленькая такая)

Альтернативный источник энергии посредством преобразователей - фотография 30 - изображение 30

Маленькая такая)

Ультразвуковой пьезоэлектрический преобразователь - фотография 31 - изображение 31

pavell743

November 4th, 2013

Первое и главное. Пьезоэлемент не является источником энергии. Он всего лишь трансформатор механической и тепловой энергии в энергию электростатического поля. Ни больше ни меньше.

Что бы понять механизм работы пьезогенератора, пьезоэлемента(ПЭ) рассмотрим два его основных свойства. Это диэлектрическая проницаемость межэлектродного пространства и пьезо электрический модуль. Нас интересует только пьезо модуль по оси поляризации кристалла, все остальные модули не так важны. Они не вызывают создание поля.

Для прямого пьезоэффекта пьезомодуль имеет размерность «К/Н» (кулон:ньютон), а его величина, в зависимости от марки пьезокерамики, находится в интервале от 200 до 500 пикокулон/ньютон (10-12К/Н).

D=g/F,

где D- это пьезо модуль (К/Н кулон/ньютон), g-заряд (К кулон), F сила в ньтонах приложенная по оси поляризации зарядов.

Пьезомодуль – это характеристика материала.

Это означает, что если мы изготовим пьезоэлемент из пьезокерамики с пьезомодулем, например, 240*10-12К/Н, то, какие бы ни были размеры пьезоэлемента, какой бы он ни был формы, каким бы образом ни прикладывали силу, то ли в точке, то ли она распределена по всей поверхности электрода, мы всегда получим на электродах заряд 240 пикокулон, если приложим силу 1 ньютон.

Напряжение на электродах можно посчитать по формуле.

U=g/C ; где U напряжение поля в вольтах, С емкость элемента в фарадах.

Легко проверить, что в этом примере, положив ёмкость равной 40 пикофарадам (это ёмкость пьезоэлементов пьезозажигалки), получим, что напряжение при силе 1Н будет равно 6В. Если действовать силой 1000Н, получим 6 кВ.

2. Какова мощность разряда пьезоэлемента? Сделать точный расчёт крайне затруднительно, да и не имеет смысла, а оценить порядок величины любопытно. Мощность тока искры это квадрат напряжения, делённый на сопротивление разрядного промежутка. Напряжение, конечно, меняется за время существования разряда от 3000 вольт до, почти, нуля.. Поэтому возьмём среднее значение 1500 вольт Но какое же сопротивление у разрядного промежутка? Мы его грубо оценим в 1 Ом, так как было замечено, что увеличение сопротивления токовода до 1 Ома уменьшает яркость искры. Теперь делаем расчёт.

P=U*U/R=1500*1500/1=2250000 ватт=2,25 мегаватт

3. Какова энергия, потраченная на искровой разряд? Это энергия электрического поля пьезоэлемента. Вычислим её по формуле:

W=CU*U/2 в Джоулях;

Мы знаем, что ёмкость С равна 40 пФ, а напряжение U к началу пробоя 3000 вольт. Рассчитываем энергию W=40*10^(-12)*3000*3000/2=180*10^(-6)=180 микро Джоулей.

Посчитаем то же самое для 1500 вольт, среднего значения напряжения пробоя. Оно равно 45 микро Джоулей.

Определим время за которое произойдет разряд:

T=2*R*C=2*1 Ом*40 пФ=80 пикосекунд,

Разделив работу тока на время его протекания, получим следующее значение мощности:

P=W/T=180 микро Джоулей/80 пикосекунд=2250 киловатт.

4. Каков кпд пьезогенератора зажигалки?

Сила линейно меняется от 0 до 500 Ньютон.. Её легко измерить с помощью бытового безмена. В расчёте следует взять среднее значение (250Н). Умножив 250Н на 0,002м получим 0,05 дж. Тогда кпд будет равен 0,03% Возникает вопрос АЧЁ так мало?

5. Посчитаем силу тока.

I=g/T; g=C*U; I=C*U/T=40пикофарад*3000вольт/80 пикосекунд=1500Ампер.

Это довольно таки крутой фронт, и по всем законам в момент образования ионизированного канала газа по которому заряды стекают, нейтрализуют локальную напряженность кристалла. Электро сопротивление фидерного канала на порядок ниже сопротивления меди, следовательно большой толшины ионизированного газа не будет. Толщина стримера микроны и объем ионизированного газа минимален.

Индуктивность стримерного промежутка не известна, да не суть важна, она минимальна и практически примем постоянной не дефференцируемой величиной.

Тогда энергия магнитного поля W=L*I*I/2, за промежуток 80 пикосекунд вырастет 2.25 миллиона раз, так как ток у нас идет в квадрате.

Неслабая такая искорка)

Она тратит меньше 1/10000 мощности на ионизацию, а остальное переводится в энергию магнитного поля.

О как )))))

А все ли помнят мопед трындящий под окном без искрозащиты?

Когда ни телек ни радио не работает)))))))

Ни чего не исчезает бесследно. Просто мы не умеем использовать энергию кристала на полную мощность, вот и будем всю сознательную жизнь топить свои печки буржуйки ассигнациями.

Tags: гео, энергия

пьезоэлементот зажигалки

Области применения пьезоэлектрического преобразователя - фото 32 - изображение 32

от нечего делать разобрал старую зажигалку, достал пьезоэлемент и показал своей девушке что это такое и как оно работает. девушка эту штуковину у меня забрала, после того как я порядком поднадоел ей и коту. вечер, я развалился на кровати в чем мать родила, на пузо ноут поставил, отдыхаю короче. рядом любимая сидит, телек смотрит. вроде ничего особенного. и вдруг - щелк! в левое яйцо мне. от неожиданности у меня сократились все мышцы, ноги поджались а ноут улетел в сторону. после этого она долго не хотела выходить из ванной комнаты) KnigaNaPolke

Пьезоэлектрические преобразователи

Недостатки преобразователей - изображение 33 - изображение 33

Принцип действия пьезоэлектрического преобразователя.Пьезоэлектрическим преобразователем называются кристаллы и текстуры, электризующиеся под действием механических напряжений (прямой пьезоэффект) и деформирующиеся в электрическом поле (обратный пьезоэффект).

Пьезоэффект обладает знакочувствительностью, т.е происходит изменение знака заряда при замене сжатия растяжением и изменение знака деформации при изменении направления поля.

Пьезоэлектрическими свойствами обладают многие кристаллические вещества (кварц, сегнетова соль, турмалин), а также искусственно созданная и специально электризуемая пьезокерамика (титонат бария, титонат свинца).

Пьезоэлектрический преобразователь представляет собой пластинку, изготовленную из пьезоэлектрического материала, на которой имеются два изолированных друг от друга электрода.

В зависимости от вещества, формы преобразователя и ориентации кристаллических осей входной величиной могут быть как силы, производящие деформацию сжатия – растяжения, так и силы, производящие деформацию сдвига. Последний вид деформации может использоваться в преобразователях, имеющих в качестве входной величины момент силы.

В кристаллических диэлектриках различно заряженные ионы располагаются в определенном порядке, образуя кристаллическую решетку. Поскольку разноименно заряженные ионы чередуются и расположены так, что их заряды взаимно компенсируются, в целом кристалл электрически нейтрален. Одной из особенностей кристаллов является их симметрия. Кристаллы могут быть симметричны относительно некоторой оси, плоскости или центра. В соответствии с видом симметрии по определенным законам построена кристаллическая решетка и расположены ионы. В направлении оси Х ионы различных знаков чередуются и взаимно компенсируют свои заряды. При действии на кристалл силы Fx в направлении Х кристаллическая решетка деформируется, расстояния между положительными и отрицательными ионами изменяются и кристалл электризуется в этом направлении. На его гранях, перпендикулярных оси Х, появляется заряд

q=d11Fx, (5.11)

пропорциональный силе Fx. Коэффициент d11 зависящий от вещества и его состояния, называется пьезоэлектрическим модулем. Индексы при коэффициенте d определяются ориентацией силы и грани, на которой появляется заряд, относительно кристаллических осей. При изменении ориентации пьезоэлектрический модуль изменяется.

Электризация кристалла под действием внешних сил называется прямым пьезоэффектом. Вещества, обладающие пьезоэффектом, называются пьезоэлектриками. Для изготовления измерительных преобразователей применяют естественные кристаллы кварца и искусственные пьезоэлектрические материалы – пьезокерамики.

Кварц(SiO2). При действии на пластинку кристалла кварца сил вдоль электрической оси Х или механической оси Y происходит поляризация кристалла. На гранях, перпендикулярных оси Х, появляются заряды

q=d11Fx или q=d12(Qx/Qy)Fy,

где Fx и Fy – соответствующие силы; Qx и площади граней, перпендикулярных осям Х и Y; d11=d12=2,31´10-12 К/Н – пьезоэлектрические модули.

Возникновение заряда под действием силы Fx называется продольным пьезоэффектом, возникновение заряда под действием Fy – поперечным пьезоэффектом.

Кварцевая пластинка имеет высокую прочность. Допустимые напряжения могут доходить до (0,7 – 1)´108 Н/м2, что позволяет прикладывать к ней большие измеряемые силы. Она имеет большой модуль упругости, что обусловливает ее высокую жесткость и очень малое собственное внутреннее трение. Последнее обстоятельство обусловливает высокую добротность изготовленных из кварца пластинок. Кварцевые пластинки используются для изготовления преобразователей, измеряющих давление и силу.

Кварц – материал с высокой твердостью, он трудно обрабатывается и может применяться для изготовления пластинок лишь простой формы. Пьезоэлектрический модуль d практически постоянен до температуры 200° С, а затем с увеличением температуры немного уменьшается. Предельная рабочая температура составляет 500° С. При температуре 573° С (температура Кюри) кварц теряет пьезоэлектрические свойства. Относительная диэлектрическая проницаемость равна 4,5 и несколько увеличивается с увеличением температуры. Удельное объемное сопротивление кварца превышает 1012 Ом. Электрические и механические свойства кварца имеют высокую стабильность. За 10 лет изменение характеристик не превосходит 0,05%.

Пьезоэлектрическая керамика.Пьезокерамика имеет доменное строение, причем домены поляризованы. При отсутствии внешнего электрического поля поляризация отдельных доменов имеет хаотическое направление и на поверхности изготовленного из пьезокерамики тела электрический заряд отсутствует. В электрическом поле домены ориентируются в направлении этого поля, вещество поляризуется и на поверхности тела появляются заряды. При снятии поля домены сохраняют свою ориентацию, вещество остается поляризованным, но поверхностный заряд с течением времени стекает. Если к телу, изготовленному из пьезокерамики, после обработки его в электрическом поле приложить механическую нагрузку, то под ее действием домены изменяют свою ориентацию и изменяется поляризация вещества. Изменение поляризации вызывает появление заряда на поверхности тела. Тело, изготовленное из поляризованной керамики, при воздействии механической силы электризуется так же, как и естественные пьезоэлектрические монокристаллы.

Типичной пьезоэлектрической керамикой является титанат бария ВаTiO3. Его пьезоэлектрический модуль лежит в пределах d31=(4,35¸8,35)´10-11 К/Н; диэлектрическая проницаемость – в пределах еr=1100 ¸1800; тангенс угла диэлектрических потерь, характеризующий внутреннее удельное сопротивление, – в пределах tgd=0,3¸3%. Зависимость возникающего заряда от приложенной силы имеет некоторую нелинейность и гистерезис. Свойства пьезокерамик зависят также от их технологии и поляризующего напряжения.

Большинство пьезокерамик обладает достаточной температурной стабильностью. Пьезоэлектрические свойства сохраняются вплоть до температуры Кюри. Для титаната бария она равна 115° С. С течением времени параметры пьезокерамики самопроизвольно изменяются. Старение определяется изменением ориентации доменов. Изготовление преобразователей из пьезокерамики значительно проще, чем из монокристаллов. Керамические изделия делаются путем прессования или литья под давлением: на керамику наносятся электроды, к электродам привариваются выводные провода. Отличие заключается в электрической обработке. Для поляризации изделие помещается в электрическое поле напряженностью 105 – 106 В/м.

Принцип работы пьезоэлемента - фото 34 - изображение 34

Рис. 5.35. Пъезоэлекрический датчик давления

Конструкция пьезоэлектрических датчиков. Пьезоэлектрические датчики применяются для измерения давления, силы, ускорения. На рис. 5.35 показано устройство пьезоэлектрического датчика давления с двумя кварцевыми пластинами. Измеряемое давление действует на мембрану 1, представляющую собой дно корпуса датчика. Кварцевые пластины 2 зажаты между металлическими прокладками 3. Средняя прокладка 3 соединена с выводом 4, проходящим через экранированную втулку 5 из изоляционного материала. Крышка 6 соединяется с корпусом и через шарик 7 передает давление пластинам, благодаря чему измеряемое давление распределяется по поверхности кварцевых пластин более равномерно.

Кварцевые пластины обычно расположены таким образом, что в измерительную схему подается отрицательный потенциал. Положительный потенциал подается на корпус датчика. Для уменьшения утечки зарядов необходима очень качественная изоляция. С этой же целью поверхность кварцевых пластин тщательно полируют. Использование двух и больше пластин повышает выходную ЭДС, поскольку выходные сигналы пластин складываются.

На рис. 5.36 показан пьезоэлектрический датчик ускорения, используемый в виброизмерительной аппаратуре. Пьезоэлемент 1 из титаната бария расположен в корпусе прибора 2 между инерционной массой 3и подпятником 4.Для увеличения силы, действующей на пьезоэлемент при ускорениях, инерционная масса имеет относительно большие размеры и изготовлена из вольфрама. Пакет из инерционной массы 3,пьезоэлемента 1 и подпятника 4прижат к основанию корпуса гайкой 5 через сферическую пяту 6, изоляционную прокладку, пружинную шайбу и контактную пластину. Вывод сигнала выполнен с помощью специального антивибрационного кабеля.

Принцип работы пьезоэлемента - фотография 35 - изображение 35

Рис. 5.36. Пьезоэлектрический датчик ускорения

Датчик измеряет ускорения от 0,2 до 200 g. Коэффициент преобразования порядка 8 мВ на 1 g. Минимальная частота виброускорений 5 Гц.

Устройства и измерительные цепи.Пьезорезонатор представляет собой изолятор с двумя обкладками в виде накопленного заряда (конденсатор) с большим выходным сопротивлением. Поэтому измерительные цепи пьезодатчиков выполняются в виде усилителей напряжения с высокоомным выходом (рис. 5.37). В этой цепи используется инвертирующий усилитель на основе операционного усилителя с входным каскадом на полевом транзисторе. Наиболее высокое входное сопротивление до 10131015Ом обеспечивают МОП – транзисторы, но они имеют высокий уровень шумов, чем полевые транзисторы с p – n– переходом типа КП303Г, входное сопротивление которого составляет не менее 1011Ом. Поэтому с высокочувствительными датчиками применяют транзисторы с p–n– переходом.

Принцип работы пьезоэлемента - фото 36 - изображение 36

Рис. 5.37. Измерительная цепь пьезодатчика.

Основной недостаток схемы с усилением напряжения – зависимость выходного напряжения от емкости кабеля (70–150–12Ф на каждым метр длины кабеля), которая может существенно измениться в зависимости от положения кабеля и таких внешних факторов, как температура и влажность, емкость пьезокварцевого датчика, которая не превышает 5–50 пикофарад.

Емкость пьезокерамических пластин может достигать 1000 пикофарад. Однако значение ёмкости менее стабильно, чем для кварцевых пластин и может меняться от температуры.

Чтобы уменьшить нестабильность чувствительности параллельно входу операционного усилителя включается дополнительная стабильная ёмкость С1, значение которой определяется допустимой погрешностью чувствительности. Таким образом, выходное напряжение операционного усилителя и чувствительность преобразователя при заданной нестабильности ёмкости определяются допустимой погрешностью.

Важной характеристикой измерительной цепи является постоянная времени:

Принцип работы пьезоэлемента - изображение 37 - изображение 37

.

Для измерительной цепи с усилением напряжения сопротивление R определяется параллельно соединённым сопротивлением изоляции датчика, кабеля, входным сопротивлением усилителя и сопротивлением R3.

Пьезоэлектрический преобразователь является генераторным преобразователем, вырабатывающим ЭДС. Для преобразования ее в приборе имеется вторичный преобразователь, который должен иметь большое входное сопротивление. Эквивалентная схема пьезоэлектрического преобразователя, соединенного измерителем, представлена на рис. 5.38.

Принцип работы пьезоэлемента - фотография 38 - изображение 38

Рис. 5.38. Эквивалентная схема замещения пьезоэлектрического преобразователя: C0 – емкость между гранями пьезоэлектрика; Ск – емкость кабеля между жилой и экраном; Свх – входная емкость измерительной цепи; R0 – сопротивление преобразователя; Rк – сопротивление изоляции кабеля; Rвх – входное сопротивление измерительной цепи

Для данной эквивалентной схемы замещения пьезоэлектрического преобразователя емкость преобразователя С определяется не только емкостью между гранями пьезоэлектрика С0, но и емкостью корпуса пьезоэлектрического преобразователя. Емкость С1 определим как суммарную емкость соединительного кабеля Ск, входной емкости усилителя Свх и других емкостей, шунтирующих вход усилителя. Сопротивления утечки пьезоэлемента и сопротивление утечки кабеля могут рассматриваться как составляющие сопротивления Rвх. Входным напряжением усилителя является падение напряжения на сопротивлении Rвх.

Произведем оценку параметров элементов данной схемы замещения. Так, собственное сопротивление пьезоэлемента R0 определяется удельным сопротивлением материала пластин и их поверхностным сопротивлением. Первая составляющая для кварца (1015–1016 Ом) значительно больше второй, поэтому определяющим является поверхностное сопротивление, для повышения которого до R=109¸1010 Ом преобразователь приходится герметизировать, защищая его поверхность от влажности и загрязнения.

Выходной величиной преобразователя является напряжение на электродах:

E=q/C, (5.12)

где q–пьезоэлектрический заряд; С–емкость, образованная электродами.

Подставляя (5.11) в (5.12), получим функцию преобразования пьезоэлектрического преобразователя:

E=dF/C. (5.13)

Если преобразователь имеет форму плоской пластины, то емкость между его электродами равна

C=еrе0Q/d, (5.14)

где еr – относительная диэлектрическая проницаемость пьезоэлектрического вещества; Q – площадь электродов; d– расстояние между электродами.

Подставляя (5.14) в (5.13), получим функцию преобразования преобразователя:

E=ddF/еrе0Q.

ЭДС, возникающая на электродах преобразователя, достигает единиц вольт. Однако, если сила постоянна, то измерить ЭДС трудно, поскольку заряд мал и быстро стекает через входное сопротивление вольтметра. Если же сила переменна, то образуется переменная ЭДС, измерить которую значительно проще. Если при этом период изменения силы много меньше постоянной времени, определяемой емкостью преобразователя и сопротивлением утечки заряда, то процесс утечки не влияет на выходное напряжение преобразователя. При синусоидальном законе изменения силы

F=Fmsinwt.

ЭДС изменяется также синусоидально:

E=Emsinwt.

Изменение переменной силы сводится к изменению переменной ЭДС или напряжения. Если на преобразователь действует синусоидальная сила, то, используя символический метод, выражение (5.13) можно переписать в виде

E=dF/C,

где

Принцип работы пьезоэлемента - изображение 39 - изображение 39

=Fmejw;

Принцип работы пьезоэлемента - изображение 40 - изображение 40

=Emejw.

Из схемы на рис. 5.38 следует

Принцип работы пьезоэлемента - изображение 41 - изображение 41

(5.15)

Выражение (5.15) представляет собой комплексную функцию преобразования эквивалентной схемы пьезоэлектрического преобразователя, подключенного к усилителю. Из него можно определить комплексный коэффициент передачи

Принцип работы пьезоэлемента - фото 42 - изображение 42

где t=R(С+С1) – постоянная времени.

Модуль чувствительности, или просто чувствительность, схемы

S(w)=

Принцип работы пьезоэлемента - изображение 43 - изображение 43

. (5.16)

Это выражение показывает зависимость чувствительности от частоты и является частной характеристикой преобразователя, подключенного к усилителю. Частотная характеристика может быть представлена в виде двух сомножителей

S(w)=S(¥)v(w).

Первый из них представляет собой чувствительность при очень больших частотах и не зависит от частоты, так как при w®¥

S(w)®

Принцип работы пьезоэлемента - фото 44 - изображение 44

.

Второй сомножитель v(w)=

Принцип работы пьезоэлемента - фото 45 - изображение 45

определяет нормированную характеристику. Он показывает относительное изменение чувствительности при изменении частоты.

Из (5.16) видно, что S=0 при w=0, т.е. пьезоэлектрические преобразователи неприменимы для измерения статических напряжений. Полученные выражения справедливы на средних и низких частотах, т.е. в тех случаях, когда внутреннее сопротивление пьезоэлемента можно заменить эквивалентной емкостью.

Пьезоэлемент обладает некоторой упругостью и массой и является колебательной системой. Резонансные свойства этой системы проявляются на высоких частотах. Резонанс приводит к повышению чувствительности на высоких частотах. При еще большем увеличении частоты чувствительность падает.

Погрешность пьезоэлектрического преобразователя.Рабочей областью частот является область, в которой чувствительность остается постоянной. Сверху эта область ограничена резонансом пьезоэлемента. Снизу она определяется постоянной времени t. Для улучшения частотных свойств в области нижних частот нужно увеличивать t=R(С+С1). Для усиления выходного напряжения пьезоэлектрического преобразователя применяют усилители с максимально возможным входным сопротивлением (не менее 1011 Ом). Дальнейшее увеличение постоянной времени может происходить при увеличении С1, для этого вход усилителя шунтируется дополнительным конденсатором. Однако включение этого конденсатора уменьшает чувствительность при больших частотах и требует увеличения коэффициента усиления усилителя. В схеме на рис. 5.37 постоянная времени t=R(С+С1) обычно не превышает 1 с. Использование операционных усилителей с обратными связями позволяет создавать приборы, у которых постоянная времени достигает значений 10 – 100 с.

Верхняя частота рабочего диапазона определяется увеличением чувствительности вследствие механического резонанса. Она довольно высока. Имеются преобразователи с верхней частотой рабочего диапазона 80 кГц.

В измерительной цепи внешними электромагнитными полями может наводиться паразитная ЭДС. Эта переменная ЭДС создает погрешность. Для защиты от полей измерительная цепь экранируется и датчик соединяется с вторичным преобразователем с помощью экранированного кабеля. Однако нестабильность емкости кабеля, обусловленная изгибом, вносит погрешность.

При изгибах кабеля он может расслаиваться. На расслоенных поверхностях вследствие трения образуются электрические заряды. Перемещение заряженных поверхностей под действием вибрации кабеля приводит к появлению некоторой переменной ЭДС. Погрешность, обусловленная вибрацией кабеля, может быть значительно уменьшена применением специальных антивибрационных кабелей. Нестабильность измерительной цепи может быть вызвана повышением влажности воздуха или резким изменением его температуры. При этом происходит увлажнение изоляции, что приводит к уменьшению сопротивления R в эквивалентной схеме рис. 5.38. Изменение R вызывает изменение чувствительности и дополнительную частотную погрешность.

Изменение температуры пьезоэлемента вызывает также изменение его пьезоэлектрического модуля и чувствительности. Наиболее стабильным пьезоэлектрическим материалом является кварц.

Погрешность преобразователя может быть вызвана также несовершенством пьезоэлектрических материалов: гистерезисом характеристики и ее нелинейностью. Если в преобразователе действуют силы, перпендикулярные оси чувствительности пьезоэлемента, то возможна погрешность, обусловленная поперечным пьезоэффектом.

Принцип работы пьезоэлемента - изображение 46 - изображение 46

Рис. 5.39. Конструкция пьезорезонатора

Область применения:

1) преобразователи, в которых используется прямой пьезоэффект, применяются в приборах для измерения давления, силы или ускорения (рис. 5.39, а);

2) преобразователи, в которых используется обратный пьезоэффект, применяются в качестве излучателей ультразвуковых колебаний, т.е. это преобразователи напряжения в деформацию (рис. 5.39, б);

3) преобразователи, в которых используются оба пьезоэффекта (пьезорезонаторы), имеющие максимальных коэффициент преобразования одного вида энергии в другой на резонансной частоте и резко уменьшающийся коэффициент преобразования при отступлении от резонансной частоты (рис. 5.39, в). Достоинством данного устройства является большая стабильность частоты опорного генератора. Точность 10-510-6. Данные преобразователи применяются в качестве фильтров, пропускающих очень упругую полосу частот. Пьезорезонаторы, включённые в цепь положением обратной связи усилителя, работают в режиме автоколебания и образуют генераторы.

Преобразователь пьезоэлектрический: назначение и применение

Принцип работы пьезоэлемента - фото 47 - изображение 47

Эти преобразователи относятся к подгруппе генераторных, в их основе посредством механики накапливаются электрические заряды. В результате выделяют следующую взаимосвязь: Q = d· P. В этом случае d является пьезомодулем, а P – усилием. Как правило, материалом выступает кварц, турмалин, смеси отжига, барий, свинец. Чтобы спроектировать пьезоэлектрический преобразователь, необходимо использовать схемы нагрузки: сжатие, изгиб, сдвиг, растяжение.

Прямой и обратный пьезоэффект

Для прямого эффекта характерно следующее: используемый кристаллический материал образует решетку за счет заряженных ионов, расположенных в определенном порядке. В процессе разноименные частицы чередуются и производят взаимную компенсацию, в результате получается электрическая нейтральность. Кристаллы имеют особенности, которые обозначены следующим образом:

  • симметрия по отношению к оси;
  • с учетом предыдущего вида проявляется решетка с ионами, которые чередуются и компенсируются.

Принцип работы пьезоэлемента - фото 48 - изображение 48

Если используемый материал в процессе направлен на силу Fx, то он деформируется, расстояние между положительными и отрицательными зарядами меняется, и происходит электризация направления в заданной оси. Все это выражается в формуле q = d11Fx и является пропорциональным для силы. Коэффициент связан с веществом и его состоянием, имеет название – пьезоэлектрический модуль. Индексы определены силой и гранью, но если изменить направление, то эффект станет иным.

Пьезоэлектрический преобразователь при прямом процессе электризует кристаллы под воздействием внешних сил. Этот эффект возникает при влиянии веществ, являющихся электриками. Чтобы изготовить измерительные приборы, понадобятся кристаллы кварца. То есть принцип действия пьезоэлектрического преобразователя следующий: при прямом эффекте воздействие осуществляется через механику, а при обратном происходит деформация кристаллов.

o.

Чтобы расширить диапазон частоты, необходимо измеряемые низкие переменные увеличить в сторону постоянной цепи времени. Подобное действие легко осуществить с помощью включения конденсаторов, которые расположены параллельно с устройством. Правда при этом напряжение выхода снизится. Сопротивление, которое было увеличено, расширит диапазон без утрат чувствительности. Но для его повышения необходимы улучшенные изоляционные качества и усилители с высокоомным входом.

Описание цепей измерения

Удельное и поверхностное сопротивления определяют собственное, причем основная составляющая для кварца выше, поэтому пьезоэлектрический преобразователь необходимо герметизировать. В результате повышаются качества, и поверхность защищается от влаги и грязи. Цепи измерения датчиков создавались как высокоомные усилители, в основе которых использовались выходной каскад на полевом транзисторе и неинвертирующий усилитель с операционным устройством. Напряжение поступает на вход и выход.

Принцип работы пьезоэлемента - фото 49 - изображение 49

Однако в этом устаревшем пьезоэлектрическом преобразователе были недостатки:

  • зависимость напряжения выхода и чувствительность по отношению к объему датчика;
  • нестабильная емкость, которая меняется из-за температурных условий.

Напряжение усилителя и чувствительность определяются допустимой погрешностью, если дополнить включенный стабильный объем С1. Формула: ys = (ΔCo + ΔCk)/(Co+Ck +C1). После преобразования получаем: S=Ubx/F. Если коэффициент увеличивается, соответственно, и эти переменные возрастают. Для измерительной цепи характерно:

  • постоянная линия времени;
  • сопротивление R определено входным усилением, изоляцией датчиков, кабелей, и R3;
  • МДП-транзисторы сильнее по сравнению с полевыми устройствами, однако имеют высокий уровень шума;
  • R3 стабилизирует напряжение, его значение высчитывается как ~ 1011 Ом.

Анализируя последнюю переменную, можно предположить, что постоянная линия времени следующая: t ≤ 1c. Сегодня устройства могут использовать с усилителями напряжения пьезоэлектрические датчики для заряда.

Преимущественные характеристики устройств

Пьезоэлектрический преобразователь имеет следующие достоинства:

  • простота конструкционной сборки;
  • габариты;
  • надежность;
  • преобразование напряжения механики в электрический заряд;
  • переменные величины, которые можно быстро измерить.

В случае с материалом вроде кварца, который близок к идеальному состоянию тела, преобразование механики в заряд электрики возможно с минимальной погрешностью от -4 до -6. Однако развитие высокоточной техники улучшило способность реализовать точность без потерь. В результате можно прийти к выводу, что для измерителей сил, давления и прочих элементов наиболее подходящими являются эти пьезоэлектрические преобразователи.

Принцип работы пьезоэлемента - фотография 50 - изображение 50

ПЭП ускорения имеет следующую конструкцию:

  • все материалы крепятся к титановому основанию;
  • два одновременно включенных пьезоэлемента из кварца;
  • высокоплотная инерционная масса предназначена для минимальных габаритов;
  • снятие сигнала посредством латунной фольги;
  • она, в свою очередь, соединена с кабелем, который припаивается;
  • датчик закрыт крышкой, навинченной в основании;
  • чтобы укрепить измеритель на объекте, нарезают резьбу.

Невзирая на массу, датчик достаточно стабилен и плотен. Работает в диапазоне 150 м/с2.

Конструкционные особенности преобразователей

Если необходимо изготовить датчик акселерометра, то важно правильно прикрепить пьезочувствительные пластины к основанию. Это действие осуществляется паянием. Кабель должен соответствовать следующим требованиям:

  • изоляционное сопротивление должно быть высоким;
  • экран размещен рядом с жилой;
  • антивибрационность;
  • гибкость.

То есть на вход усилителя не должна производиться тряска кабеля. Измерительная цепь создается симметрично, чтобы не возникало помех. В датчике связь несимметричная, сопротивление выводов и корпуса соединено таким образом, что получается изоляция внешних пластин. Чтобы добиться нужного результата, требуется измеритель выполнить из нечетного количества материалов, которые используются в процессе. Элементы прижимаются к усилителю сквозь отверстия в центральной части и через изоляторы, которые привинчены к корпусу.

Особенности приборов, измеряющих вибрации

Чтобы увеличить чувствительность измерительного прибора, необходимо применить пьезоэлементы с высоким модулем. Этот материал укладывают параллельно в ряд и соединяют металлическими прокладками и пластинами. Для подобного эффекта еще могут применяться вещества, которые работают на изгиб. Однако они имеют низкую частоту и уступают механике сжатия.

Материал может быть биморфным, его обычно собирают последовательно или параллельно, все зависит от положительно расположенных осей. Как правило, это две пластины. Если учитывать нейтральный слой, то над ним вместо пьезоэлемента может использоваться накладка из металла со средней толщиной.

Принцип работы пьезоэлемента - изображение 51 - изображение 51

Чтобы измерить сигналы, которые двигаются достаточно медленно, необходимо сделать следующее:

  • пьезопреобразователь включают в автогенератор;
  • кристалл находится на резонансной частоте;
  • как только произойдет нагрузка, показатели изменятся.

Сегодня пьезоакселерометры – усовершенствованные приборы, которые могут быть высокочастотными, с сильной чувствительностью.

Альтернативный источник энергии посредством преобразователей

Одним из знаменитых и неисчерпаемых средств получения электричества является энергия волн. Такие станции монтируют непосредственно в водную среду. Это явление связано с солнечными лучами, которые нагревают массу воздуха, благодаря чему возникают волны. Вал данного явления имеет энергоемкость, которая определяется по силе ветра, ширине воздушных фронтов, продолжительности порывов.

Значение может колебаться на мелководье или достигать 100 кВт на один метр. Пьезоэлектрический преобразователь энергии волн работает по определенному принципу. Уровень воды поднимается посредством волны, в процессе воздух выдавливается из сосуда. Затем потоки пропускаются реверсирующейся турбиной. Агрегат вращается по определенному направлению, вне зависимости от движения волн.

Принцип работы пьезоэлемента - изображение 52 - изображение 52

Этот аппарат имеет положительную характеристику. До сегодняшнего дня совершенствование конструкции не прогнозируется, потому что эффективность и принцип работы доказаны всеми существующими путями. В процессе технического прогресса, возможно, будут построены плавучие станции.

Ультразвуковой пьезоэлектрический преобразователь

Этот прибор устроен таким образом, что не требует дополнительных настроек. Он снабжен блоком памяти, который выдает технический результат. Относится к контрольно-измерительным аппаратам. Подобные устройства отличаются по типу, техническим характеристикам, которые составляются на основе данных о конструкции и предназначении с минимальными погрешностями. Все требования учитываются на основе конструкции.

Для всех подобных аппаратов предусмотрена стандартная схема создания: дефектоскоп, корпус, электроды, главный элемент, который скрепляют с основанием, жила, фольга и другие материалы. Ультразвуковой пьезоэлектрический преобразователь является полезной моделью. Он позволяет получать данные непосредственно с помощью звука, установленного на основании устройства.

Области применения пьезоэлектрического преобразователя

Устройства с прямым эффектом используются в приборах, которые измеряют силу, давление, ускорение. У них высокий уровень частоты и жесткости. Аппараты с обратной связью применяют в ультразвуковых колебаниях, преобразовании напряжения в деформацию, уравновешивания. Если одновременно учитывают оба эффекта, то этот вариант подходит для пьезорезонаторов, которые преобразуют один вид энергии в другой достаточно быстро.

Принцип работы пьезоэлемента - фотография 53 - изображение 53

Положительные устройства, включенные в обратное направление, работают на автоматических колебаниях и применяются в генераторах. Область их применения обширна, так как они имеют высокую стабильность при правильном создании. Зачастую для достижения нужного эффекта и получения верных сведений используют несколько пьезорезонаторов.

Недостатки преобразователей

В данных устройствах присутствует огромное количество положительных сторон. Однако они имеют и отрицательные черты:

  • сопротивление на выходе – максимальное;
  • измерительные схемы и кабели должны быть созданы на основе жестких требований и рекомендаций.

Расчет пьезоэлектрического преобразователя изначально выводит формулу уравнения для резонансной частоты: Fp = 0.24 ·c·. Толщина пластины: h = Fp · a2 / 0.24 · c = 35 · 103 · 25 · 10-6/ 0.24 · 2900 = 1.257 · 10-3m. Энергетические характеристики высчитываются так: Wак = Wак.уд · S = 40 · 4.53 · 10-3.

Принцип работы пьезоэлемента - изображение 54 - изображение 54

Емкостной датчик: устройство и принцип работы. Емкостные датчики: ... Современную промышленность, да и повседневную человеческую деятельность человека тоже, невозможно себе представить без разного рода электронных приборов. К таковым следует отнести и емкостной датчик. далее

Принцип работы пьезоэлемента - фотография 55 - изображение 55

Толщиномеры ультразвуковые: принцип действия, инструкция, ... Ультразвуковое измерение толщины является неразрушающим односторонним методом определения ширины материала. Он быстр, надежен и универсален. далее

Принцип работы пьезоэлемента - фото 56 - изображение 56

Ультразвуковая мойка: принцип действия, преимущества использования и ... Ультразвуковая мойка – это устройство для эффективной очистки различных изделий из металлов и пластмасс.Такие приборы широко используются в медицине, салонах красоты, пищевой промышленности, на станциях технического обслуживания и в других областях. далее

Принцип работы пьезоэлемента - фотография 57 - изображение 57

Как сделать магнитострикционный излучатель своими руками: краткое ... Магнитострикционный излучатель довольно простой по конструкции. Однако существуют модели с разной проводимостью. Сделать устройство можно, если разобраться в схеме излучателя. далее

Принцип работы пьезоэлемента - фото 58 - изображение 58

Магнитопорошковые дефектоскопы: принцип действия Статья посвящена магнитопорошковым дефектоскопам. Рассмотрен принцип действия таких приборов, особенности моделей и т. д. далее Тензометрические датчики: краткое описание, инструкция по применению, характеристики и отзывы Принцип работы всех тензодатчиков основан на преобразовании деформации упругого элемента в электрический сигнал. Когда выбираются тензометрические датчики, важно определить, имеется ли в схемах компенсация искажающих показания температурных и паразитных механических воздействий. далее

  • Главная
  • Образование
  • / Наука

Принцип работы пьезоэлемента - фото 59 - изображение 59

Тензометрический датчик: виды, принцип работы и устройство Тензометрический датчик - это средство измерения, трансформирующее величину деформации в понятный для измерения сигнал. Существуют тензометрические датчики веса, силы, давления, перемещения и т.д. далее

Принцип работы пьезоэлемента - фотография 60 - изображение 60

Ультразвуковой контроль сварных соединений, способы и технология контроля Ультразвуковой контроль - передовая технология исследования сварочных соединений и швов. О ней и пойдет речь в данной статье. далее

Принцип работы пьезоэлемента - изображение 61 - изображение 61

Ультразвуковые датчики Ультразвуковые датчики представляют собой сенсорные устройства, которые преобразуют электрическую энергию в волны ультразвука. Принцип работы схож с радаром, так как они обнаруживают цель на основе интерпретации сигнала, который от них отражен. Скорость звука является величиной постоянной, поэтому с помощью такого датчика можно легко установить расстояние до объекта, соответствующее интервалу времени между отправкой самого сигнала и возвращением эха от него. далее

Принцип работы пьезоэлемента - фотография 62 - изображение 62

Головки звукоснимателя: характеристики, обзоры и отзывы Современные электрофоны оборудуются специальными головками звукоснимателей. От них зависит качество звучания виниловой пластинки, поэтому к выбору модели следует подходить ответственно. далее

Принцип работы пьезоэлемента - фото 63 - изображение 63

Принцип работы пьезоэлемента - фото 64 - изображение 64

  • Самосовершенствование
  • Психология

Организовать кухонное пространство: что сделать, чтобы начать новую жизнь Желание начать новую жизнь рано или поздно возникает у многих людей, но далеко не всем удается осуществить эти планы. далее

Принцип работы пьезоэлемента - фото 65 - изображение 65

  • Новости и общество
  • Природа

Тигр прошел 1000 миль в поисках спутницы То, что тигры могут проходить большие расстояния в поисках безопасного места, еды и партнера, известно давно. Но полосатый хищник... далее

Принцип работы пьезоэлемента - изображение 66 - изображение 66

  • Наука
  • Международные исследования

Прогноз по заселению Марса: для переселения понадобится... Если откорректировать климат и водоснабжение, то Марс будет вполне пригодным для жизни. Но для этого нужно доставить туда... далее

Принцип работы пьезоэлемента - фото 67 - изображение 67

  • Музыка
  • Знаменитости
  • Культура

Адель поразила поклонников кардинальными... Певица знает, как произвести впечатление на окружающих. На вечеринку по случаю дня рождения рэпера Дрейка она прибыла в... далее

Принцип работы пьезоэлемента - изображение 68 - изображение 68

  • Здоровье
  • Сон

Последствия сна на боку и как от них избавиться Сон на боку - самая распространенная поза: почти 74% людей спят так. Профессионалы по-прежнему не уверены в лучшем положении для сна... далее

Принцип работы пьезоэлемента - фотография 69 - изображение 69

  • Искусство и развлечения
  • Юмор

Фото, от которых становится и грустно, и смешно одновременно В интересном и поучительном мультфильме "Вовка в тридевятом царстве" коронной фразой главного героя была "и так сойдет". далее

Принцип работы пьезоэлемента - фото 70 - изображение 70

  • Знаменитости
  • Искусство и развлечения
  • Визуальное искусство

Завораживающая правдоподобность: портреты, которые невероятно похожи на фото Это действительно впечатляет, невозможно оторвать взгляд от этих произведений! далее

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 602)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты