Принцип работы спирального компрессора

Спиральный компрессор

Спиральный компрессор - изображение 1

Спиральный компрессор - устройство для сжатия газа (воздуха или хладагента), за счет уменьшения его объема в камерах, образованных поверхностями спиралей.

Спиральные компрессоры используются в системах кондиционирования, охлаждения, нагрева, в автомобилях, в криогенных и холодильных системах, в качестве вакуумных насосов.

Устройство и принцип работы спирального компрессора

Существует несколько типовых конструкции спиральных компрессоров.

Наиболее распространенный вариант - использование двух спиральных элементов, установленных с эксцентриситетом. Один из этих элементов подвижный, другой нет.

Устройство и принцип работы спирального компрессора - фото 2

Конструкция компрессора с одной подвижной спиралью

Спиральный компрессор показан на рисунке.

Достоинства спиральных компрессоров - фото 3

В герметичном корпусе размещен электродвигатель, который приводит во вращение вал. В верхней части корпуса установлена неподвижная спираль. На валу установлена подвижная спираль, которая может перемещаться по направляющим совершая сложное движение относительно неподвижной спирали.

В результате перемещения между спиралями образуются камеры (карманы), объем которых при дальнейшем движении уменьшается, и как следствие газ находящийся в этих карманах сжимается.

Принцип работы такого компрессора показан в ролике:

Также встречаются компрессоры с двумя подвижными спиралями, совершающими вращательное движение относительно разных осей. В результате вращения спиральных элементов также образуются камеры, объем которых при вращении уменьшается.

В большей степени от представленных выше вариантов отличается компрессор, в котором жесткий элемент выполненный в форме архимедовой спирали воздействует на гибкую упругую трубку. По принципу работы такой компрессор схож с перистальтическим насосом. Такие спиральные компрессоры обычно заполнены жидкой смазкой для снижения износа гибкой трубки и отвода тепла. Такие компрессоры часто называют шланговыми.

Динамические клапаны

В спиральных компрессорах клапан на всасывании не нужен, т.к. подвижная спираль сама отсекает рабочую камеру от канала всасывания. В линии нагнетания спирального компрессора может устанавливаться динамический клапан, который не допускает обратного потока и, как следствие, вращения спирали под действием сжатого газа при выключенном двигателе. При этом следует учитывать, что динамический клапан создает дополнительное сопротивление в линии нагнетания.

Динамические клапаны устанавливают в линии нагнетания средне- и низкотемпературных компрессоров Copeland, предназначенных для холодильной техники.

Достоинства спиральных компрессоров

Спиральный компрессор работает более плавно, и надежно, чем большинство других объемных машин. В отличие поршней, подвижная спираль может быть идеально уравновешена, что сводит к минимуму вибрацию.

Отсутствие мертвого объема в спиральных компрессорах обуславливает повышенную объемную эффективность.

Спиральные компрессоры обычно обладают меньшей пульсацией чем поршневые компрессоры с одним поршнем, но большей чем много поршневые машины.

Спиральные компрессоры имеют меньше движущихся частей, по сравнению с поршневыми, что, теоретически, обеспечивает их большую надежность.

Спиральные компрессоры, как правило, очень компактны и не требуют пружиной подвески, вследствие плавной работы.

Недостатки спиральных компрессоров

Спиральные компрессоры чувствительны к загрязнению перекачиваемого газа, т.к. мелкие частицы могут оседать на поверхности спирали, что не позволит обеспечить достаточную герметичность рабочей камеры.

Вал спирального компрессора должен вращаться только в одном направлении.

Регулируемые спиральные компрессоры

Долгое время спиральные компрессоры выпускались без возможности регулировки производительности. При необходимости уменьшить подачу использовалось частотное регулирование приводного электродвигателя, либо перепуск части газа из линии нагнетания в линию всасывания.

В настоящее время регулируемые спиральные компрессоры производятся компанией Emerson. В этих компрессорах может изменяться расстояние между осями вращения спиралей, при необходимости это расстояние можно выбрать таким, что между спиральным элементами не будут образоваться камеры, а значит подача компрессора будет рана 0. Чередуя два различных рабочих состояния (холостой и рабочий ход) с помощью электронного управления, можно добиться требуемой производительности.

Недостатки спиральных компрессоров - фотография 4

Во время процесса сжатия одна спираль остается неподвижной (зафиксированной), а вторая совершает орбитальные (но не вращательные) движения (орбитальная спираль) вокруг неподвижной спирали. По мере развития такого движения, области между двумя спиралями постепенно проталкиваются к их центру, одновременно сокращаясь в объеме. Когда область достигает центра спирали, газ, который теперь находится под высоким давлением, выталкивается из порта, расположенного в центре. Во время сжатия несколько областей подвергаются сжатию одновременно, что позволяет осуществлять процесс сжатия плавно. 

И процесс всасывания (внешняя часть спиралей), и процесс нагнетания (внутренняя часть спиралей) осуществляются непрерывно.

1. Процесс сжатия осуществляется путем взаимодействия орбитальной и неподвижной спиралей. Газ попадает во внешние области, образованные во время одного из орбитальных движений спирали.

2. В процессе прохождения газа в полость спиралей всасывающие области закрываются.

3. Т. к. подвижная спираль продолжает орбитальное движение, газ сжимается в двух постоянно уменьшающихся областях.

4. К тому времени, как газ достигнет центра, создается давление нагнетания.

5. Обычно во время работы все шесть областей, наполненных газом, находятся в различных стадиях сжатия, что позволяет осуществлять процессы всасывания и нагнетания непрерывно.

Холодильные герметичные спиральные компрессоры COPELAND - фотография 6

Роторный винтовой компрессор - фото 12

 

Преимущества

1. Отсутствие всасывающих и нагнетательных клапанов.

2. Практически отсутствует мертвый объем.

3. Процесс нагнетания практически непрерывный.

4. Низкий уровень вибрации и шума.

5. Высокая эффективность и простота в обслуживании.

6. Стабильность работы при попадании в зону сжатия механических примесей, продуктов износа или жидкого хладагента.

7. Малая масса и габариты.

Недостатки:

Сложное технологическое изготовление.

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 904)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты