Принцип работы усилителя

Схема усилителя низкой частоты. Классификация и принцип работы УНЧ

Схема усилителя низкой частоты. Классификация и принцип работы УНЧ - фото 1 - изображение 1

Усилитель низких частот (далее УНЧ) – электронное устройство, предназначенное для усиления колебаний низкой частоты до той, которая необходима потребителю. Они могут выполняться на различных электронных элементах вроде транзисторов разных типов, ламп или операционных усилителей. Все УНЧ обладают рядом параметров, которые характеризуют эффективность их работы.

В данной статье будет рассказано о применении такого устройства, его параметрах, способах построения с помощью различных электронных компонентов. Также будет рассмотрена схемотехника усилителей низкой частоты.

Применение УНЧ - фотография 2 - изображение 2

Применение УНЧ

Чаще всего УНЧ используется в аппаратуре для воспроизведения звука, потому что в данной области техники часто необходимо усиливать частоту сигнала до той, которую может воспринимать человеческий организм (от 20 Гц до 20 кГц).

Другие области применения УНЧ:

  • измерительная техника;
  • дефектоскопия;
  • аналоговая вычислительная техника.

В целом усилители низких частот встречаются в качестве составных компонентов различных электронных схем, например, радиоприемников, акустических устройств, телевизоров или радиопередатчиков.

Параметры

Важнейший параметр для усилителя – коэффициент усиления. Он рассчитывается, как отношение выходного сигнала к входному. В зависимости от рассматриваемой величины, различают:

  • коэффициент усиления по току = выходной ток / входной ток;
  • коэффициент усиления по напряжению = выходное напряжение / входное напряжение;
  • коэффициент усиления по мощности = выходная мощность / входная мощность.

Для некоторых устройств вроде операционных усилителей значение этого коэффициента очень велико, но работать со слишком большими (равно как и со слишком малыми) числами при вычислениях неудобно, поэтому часто коэффициенты усиления выражают в логарифмических единицах. Для этого применяются следующие формулы:

  • коэффициент усиления по мощности в логарифмических единицах = 10 * десятичный логарифм искомого коэффициента усиления по мощности;
  • коэффициент усиления по току в логарифмических единицах = 20 * десятичный логарифм искомого коэффициента усиления по току;
  • коэффициент усиления по напряжению в логарифмических единицах = 20 * десятичный логарифм искомого коэффициента усиления по напряжению.

Рассчитанные подобным образом коэффициенты измеряются в децибелах. Сокращенное наименование – дБ.

Следующий важный параметр усилителя – коэффициент искажения сигнала. Важно понимать, что усиление сигнала происходит в результате его преобразований и изменений. Не факт, что всегда эти преобразования будут происходить корректно. По этой причине выходной сигнал может отличаться от входного, например, по форме.

Идеальных усилителей не существует, поэтому искажения всегда имеют место. Правда, в одних случаях они не выходят за допустимые границы, а в других – выходят. Если гармоники сигналов на выходе усилителя совпадают с гармониками входных сигналов, то искажения линейные и сводятся лишь к изменению амплитуды и фазы. Если же на выходе появляются новые гармоники, то искажения нелинейные, потому что приводят к изменению формы сигнала.

Проще говоря, если искажения линейные и на входе усилителя был сигнал «а», то на выходе будет сигнал «А», а если нелинейные, то на выходе будет сигнал «Б».

Заключительный важный параметр, характеризующий работу усилителя, это выходная мощность. Разновидности мощности:

  1. Номинальная.
  2. Паспортная шумовая.
  3. Максимальная кратковременная.
  4. Максимальная долговременная.

Все четыре типа нормируются различными ГОСТами и стандартами.

Усилители на лампах

Исторически первые усилители создавались на электронных лампах, которые относятся к классу электровакуумных приборов.

В зависимости от расположенных внутри герметичной колбы лампы электродов различают:

  • диоды;
  • триоды;
  • тетроды;
  • пентоды.

Максимальное количество электродов – восемь. Существуют также такие электровакуумные приборы, как клистроны.

Параметры - фото 3 - изображение 3

Усилитель на триоде

Для начала стоит разобраться со схемой включения. Описание схемы усилителя низкой частоты на триоде приведено далее.

На нить накала, которая нагревает катод, подается напряжение. Также напряжение подается на анод. С катода под действием температуры выбиваются электроны, которые устремляются к аноду, на который подан положительный потенциал (у электронов потенциал отрицательный).

Часть электронов перехватывается третьим электродом – сеткой, к которой также подведено напряжение, только переменное. С помощью сетки регулируется анодный ток (ток в схеме в целом). Если на сетку подать большой отрицательный потенциал, все электроны с катода осядут на ней, а через лампу не будет протекать ток, потому что ток – направленное движение электронов, а сетка это движение перекрывает.

Коэффициент усиления лампы регулирует резистор, который подключен между источником питания и анодом. Он задает нужное положение рабочей точки на вольт-амперной характеристике, от которого и зависят параметры усиления.

Почему положение рабочей точки так важно? Потому что от него зависит, насколько будет усилен ток и напряжение (следовательно, и мощность) в схеме усилителя низкой частоты.

Выходной сигнал на триодном усилителе снимается с участка между анодом и резистором, включенным перед ним.

Усилители на лампах - фотография 4 - изображение 4

Усилитель на клистроне

Принцип работы усилителя низкой частоты на клистроне основан на модуляции сигнала сначала по скорости, а затем по плотности.

Клистрон устроен следующим образом: в колбе есть катод, нагреваемый нитью накала, и коллектор (аналог анода). Между ними расположены входной и выходной резонаторы. Электроны, испускаемые с катода, ускоряются напряжением, подведенным к катоду, и устремляются к коллектору.

Одни электроны будут двигаться быстрее, другие медленнее – так выглядит модуляция по скорости. Из-за разницы в скорости движения электроны группируются в пучки – так проявляется модуляция по плотности. Модулированный по плотности сигнал попадает на выходной резонатор, где создает сигнал той же частоты, но большей мощности, чем и у входного резонатора.

Получается, что кинетическая энергия электронов преобразуется в энергию СВЧ-колебаний электромагнитного поля выходного резонатора. Так происходит усиление сигнала в клистроне.

Особенности электровакуумных усилителей

Если сравнить качество одного и того же сигнала, усиленного ламповым устройством и УНЧ на транзисторах, то разница будет видна невооруженным глазом не в пользу последнего.

Любой профессиональный музыкант скажет, что ламповые усилители куда лучше своих продвинутых аналогов.

Электровакуумные приборы давно вышли из массового потребления, им на смену пришли транзисторы и микросхемы, но это неактуально для области воспроизведения звука. За счет температурной стабильности и вакуума внутри ламповые приборы лучше усиливают сигнал.

Единственный недостаток лампового УНЧ – высокая цена, что логично: дорого выпускать элементы, которые не пользуются массовым спросом.

Усилитель на биполярном транзисторе

Часто усилительные каскады собираются с использованием транзисторов. Простой усилитель низкой частоты можно собрать всего из трех основных элементов: конденсатора, резистора и n-p-n транзистора.

Для сборки такого усилителя понадобится заземлить эмиттер транзистора, подсоединить к его базе последовательно конденсатор, а параллельно – резистор. Нагрузку следует располагать перед коллектором. К коллектору в данной схеме целесообразно подключить ограничительный резистор.

Допустимое напряжение питания такой схемы усилителя низкой частоты варьируется от 3 до 12 вольт. Номинал резистора следует выбирать экспериментально с учетом того, что его величина должна быть минимум в 100 раз больше сопротивления нагрузки. Номинал конденсатора может варьироваться от 1 до 100 мкФ. Его емкость влияет на величину частоты, с которой может работать усилитель. Чем больше емкость, тем ниже номинал частоты, которую может усиливать транзистор.

Входной сигнал усилителя низкой частоты на биполярном транзисторе подается на конденсатор. Положительный полюс питания необходимо соединить с точкой соединения нагрузки и резистора, параллельно соединенного с базой и конденсатором.

Чтобы улучшить качество такого сигнала, можно подключить к эмиттеру параллельно соединенные конденсатор и резистор, играющие роль отрицательной обратной связи.

Усилитель на триоде - фотография 5 - изображение 5

Усилитель на двух биполярных транзисторах

Чтобы повысить коэффициент усиления, можно соединить два одиночных УНЧ на транзисторах в один. Тогда коэффициенты усиления этих устройств можно будет умножить.

Хотя если продолжать наращивать число усилительных каскадов, то будет увеличиваться шанс самовозбуждения усилителей.

Усилитель на полевом транзисторе

Усилители низких частот собирают и на полевых транзисторах (далее ПТ). Схемы таких устройств ненамного отличаются от тех, что собираются на биполярных транзисторах.

В качестве примера будет рассмотрен усилитель на полевом транзисторе с изолированным затвором с n-каналом (МДП типа).

К подложке данного транзистора последовательно подключается конденсатор, параллельно – делитель напряжения. К истоку ПТ подключается резистор (можно также использовать параллельное соединение конденсатора и резистора, как описано выше). К стоку подключается ограничительный резистор и питание, а между резистором и стоком создается вывод на нагрузку.

Входной сигнал к усилителям низкой частоты на полевых транзисторах подается на затвор. Осуществляется это также через конденсатор.

Как видно из пояснения, схема простейшего усилителя на полевом транзисторе ничем не отличается от схемы усилителя низкой частоты на биполярном транзисторе.

Правда, при работе с ПТ стоит учитывать следующие особенности данных элементов:

  1. У ПТ высокое Rвходное = I / Uзатвор-исток. Полевые транзисторы управляются электрическим полем, которое образуется за счет напряжения. Следовательно, ПТ управляются напряжением, а не током.
  2. ПТ почти не потребляют ток, что влечет за собой слабое искажение исходного сигнала.
  3. В полевых транзисторах нет инжекции зарядов, поэтому уровень шумов данных элементов очень низкий.
  4. Они устойчивы к изменению температуры.

Главный недостаток полевых транзисторов – высокая чувствительность к статическому электричеству.

Многим знакома ситуация, когда, казалось бы, нетокопроводящие вещи бьют человека током. Это и есть проявление статического электричества. Если такой импульс подать на один из контактов полевого транзистора, можно вывести элемент из строя.

Таким образом, при работе с ПТ лучше не браться руками за контакты, чтобы случайно не повредить элемент.

Усилитель на клистроне - изображение 6 - изображение 6

Устройство на операционном усилителе

Операционный усилитель (далее ОУ) – устройство с дифференцированными входами, обладающее очень высоким коэффициентом усиления.

Усиление сигнала – не единственная функция данного элемента. Он может работать и в качестве генератора сигналов. Тем не менее для работы с низкими частотами интересны именно его усилительные свойства.

Чтобы из ОУ сделать усилитель сигналов, необходимо грамотно подключить к нему цепь обратной связи, которая представляет из себя обычный резистор. Как понять, куда подключать данную цепь? Для этого нужно обратиться к передаточной характеристике ОУ. Она имеет два горизонтальных и один линейный участок. Если рабочая точка устройства расположена на одном из горизонтальных участков, то ОУ работает в режиме генератора (импульсный режим), если она находится на линейном участке, то ОУ усиливает сигнал.

Чтобы перевести ОУ в линейный режим, нужно подключить резистор обратной связи одним контактом к выходу устройства, а другим – к инвертирующему входу. Такое включение называется отрицательной обратной связью (ООС).

Если требуется, чтобы сигнал низкой частоты усиливался и не менялся по фазе, то инвертирующий вход с ООС следует заземлить, а на неинвертирующий вход подать усиливаемый сигнал. Если же необходимо усилить сигнал и изменить его фазу на 180 градусов, то неинвертирующий вход нужно заземлить, а на инвертирующий подать входной сигнал.

При этом нельзя забывать, что на операционный усилитель необходимо подавать питание противоположных полярностей. Для этого у него есть специальные контактные выводы.

Важно заметить, что работе с такими устройствами иногда бывает сложно подобрать элементы для схемы усилителя низкой частоты. Требуется их тщательное согласование не только по номинальным значениям, но и по материалам, из которых они изготовлены, для достижения нужных параметров усиления.

Особенности электровакуумных усилителей - фотография 7 - изображение 7

Усилитель на микросхеме

УНЧ можно собирать и на электровакуумных элементах, и на транзисторах, и на операционных усилителях, только электронные лампы – это прошлый век, а остальные схемы не лишены недостатков, исправление которых неминуемо влечет усложнение конструкции усилителя. Это неудобно.

Инженеры давно нашли более удобный вариант создания УНЧ: промышленностью выпускаются готовые микросхемы, выполняющие роль усилителей.

Каждая из таких схем – набор ОУ, транзисторов и других элементов, соединенных определенным образом.

Примеры некоторых серий УНЧ в виде интегральных микросхем:

  • TDA7057Q.
  • К174УН7.
  • TDA1518BQ.
  • TDA2050.

Все приведенные выше серии применяются в аудиоаппаратуре. Каждая из моделей имеет разные характеристики: напряжение питания, выходную мощность, коэффициенты усиления.

Они изготавливаются в виде небольших элементов с множеством выводов, которые удобно располагать на плате и монтировать.

Для работы с усилителем низкой частоты на микросхеме полезно знать азы алгебры логики, а также принципы работы логических элементов И-НЕ, ИЛИ-НЕ.

На логических элементах можно собрать практически любые электронные устройства, но в этом случае многие схемы будут получаться громоздкими и неудобными для монтажа.

Поэтому применение готовых интегральных микросхем, выполняющих функцию УНЧ, представляется наиболее удобным практическим вариантом.

Усилитель на биполярном транзисторе - фото 8 - изображение 8

Улучшение схем

Выше был приведен пример того, как можно улучшить усиливаемый сигнал при работе с биполярными и полевыми транзисторами (подключением параллельного соединения конденсатора и резистора).

Подобные конструкционные модернизации можно производить практически с любыми схемами. Конечно, внедрение новых элементов увеличивает падение напряжения (потери), но благодаря этому можно улучшить свойства различных схем. Например, конденсаторы являются отличными фильтрами частот.

На резистивных, емкостных или индуктивных элементах рекомендуется собирать простейшие фильтры, отсеивающие частоты, которые не должны попадать в схему. Комбинируя резистивные и емкостные элементы с операционными усилителями, можно собирать более эффективные фильтры (интеграторы, дифференциаторы по схеме Саллена-Ки, режекторные и полосовые фильтры).

В заключение

Важнейшими параметрами усилителей частот являются:

  • коэффициент усиления;
  • коэффициент искажения сигнала;
  • выходная мощность.

Усилители низких частот чаще всего используются в звуковой аппаратуре. Собирать данные устройства можно практически на следующих элементах:

  • на электровакуумных лампах;
  • на транзисторах;
  • на операционных усилителях;
  • на готовых микросхемах.

Характеристики усилителей низкой частоты можно улучшать за счет введения резистивных, емкостных или индуктивных элементов.

Каждая из схем, приведенных выше, обладает своими достоинствами и недостатками: какие-то усилители дорого собирать, какие-то могут уйти в насыщение, для некоторых сложно согласовать используемые элементы. Всегда есть особенности, с которыми человеку, занимающемуся конструированием усилителей, приходится считаться.

Пользуясь всеми рекомендациями, что даны в этой статье, можно собрать собственный усилитель для домашнего использования вместо того, чтобы покупать это устройство, которое может стоить больших денег, если речь идет о приборах высокого качества.

Усилитель

Усилитель на двух биполярных транзисторах - фотография 9 - изображение 9

Электронный усилитель – это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.

Оглавление

  • 1 Что из себя представляет усилитель?
  • 2 Усилитель в образе черного ящика
  • 3 Четырехполюсники
    • 3.1 Пассивный четырехполюсник
    • 3.2 Активный четырехполюсник
  • 4 Обобщенная схема усилителя
  • 5 Типы усилителей
    • 5.1 Усилитель напряжения
    • 5.2 Усилитель тока
    • 5.3 Усилитель мощности
  • 6 Выходная мощность усилителя
  • 7 Виды усилителей по полосе пропускания
    • 7.1 Усилители низкой частоты
    • 7.2 Усилители высокой частоты
    • 7.3 Широкополосные усилители
    • 7.4 Узкополосные усилители
    • 7.5 Усилители постоянного тока

Что из себя представляет усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

Усилитель на полевом транзисторе - изображение 10 - изображение 10

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Устройство на операционном усилителе - изображение 11 - изображение 11

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

Усилитель на микросхеме - фото 12 - изображение 12

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Усилитель в образе черного ящика

В общем виде усилитель можно рассматривать как черный ящик.

Улучшение схем - изображение 13 - изображение 13

Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса,  можно предположить, что находится у него внутри.

То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

В заключение - изображение 14 - изображение 14

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.

Четырехполюсники

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

Усилитель - фотография 15 - изображение 15

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

II.2. Принцип работы усилителя - фото 16 - изображение 16

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.

<em><strong>II.1. Блок-схема и принципиальная схема усилителя.</strong></em> - фото 17 - изображение 17

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

Как выбрать усилитель сотовой связи и интернета - изображение 18 - изображение 18

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

Усилитель на транзисторах: виды, схемы, простые и сложные - фото 19 - изображение 19

Обобщенная схема усилителя

Она  выглядит примерно вот так:

Частотные характеристики - изображение 20 - изображение 20

Как мы можем видеть на схеме, ко входу усилительного каскада  через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала  с ЭДС  EИ   и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи  EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от  входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн  будет зависеть от сопротивления нагрузки Rн .

Типы усилителей

Усилители можно разделить на три группы:

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

Классы работы звуковых усилителей - фотография 21 - изображение 21

где

KU – это коэффициент усиления по напряжению

Uвых – напряжение на выходе усилителя, В

Uвх – напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

Наличие искажений в различных классах НЧ-усилителей - изображение 22 - изображение 22

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е.  Rвх >>Rи  и Rн намного больше, чем Rвых    (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых.  Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

Работа в промежуточных классах - фото 23 - изображение 23

где KI   – коэффициент усиления по току

Iвых  – сила тока в цепи нагрузки, А

Iвх  – сила тока во входной цепи Eи —>Rи —>Rвх , А

Смысл работы усилителя тока такой:  при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а  значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх  пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим,  у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А  усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх << Rи и Rн << Rвых  при которых обеспечивается заданный ток в нагрузке при малом значении напряжения.

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ  мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

«Альтернативные» конструкции - фото 24 - изображение 24

где

P – мощность, Вт

I – сила тока, А

U – напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

Схема однотактного УНЧ на транзисторе - фотография 25 - изображение 25

где

KP– коэффициент усиления по мощности

Pвых  – мощность на выходе усилителя, Вт

Pвх  – мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Усилители на МДП-транзисторах - фото 26 - изображение 26

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Выходная мощность усилителя

Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:

УНЧ с трансформатором на выходе - фото 27 - изображение 27

где

Pвых– выходная мощность усилителя, Вт

Iвых– сила тока в цепи нагрузки, А

UВых  – напряжение на нагрузке, В

Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:

Двухтактный усилитель звука - фотография 28 - изображение 28

где

Pвых– выходная мощность усилителя, Вт

Iвых– сила тока в цепи нагрузки, А

Uвых  – напряжение на нагрузке, В

cosφ  – где φ – это разность фаз между осциллограммой тока и напряжения

Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид

Бестрансформаторные УНЧ - фотография 29 - изображение 29

Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.

Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.

Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:

В УН KU > 1, KI = 1;       в УТ KI > 1, KU = 1;          в УМ KU > 1 и KI > 1.

Виды усилителей по полосе пропускания

По ширине полосы пропускания усилители делятся на:

Усилители низкой частоты

Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.

Усилители высокой частоты

Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.

Широкополосные усилители

Они позволяют  усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.

Узкополосные усилители

Они усиливают узкую полосу частот. Это могут быть  резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.

Усилители постоянного тока

Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).

В следующей статье мы с вами разберем основные параметры усилителя, а пока вот вам видео, который говорит о вреде чрезмерного усиления)

II.2. Принцип работы усилителя

Схема УНЧ на одном транзисторе - изображение 30 - изображение 30

Классификацию усилителей осуществляют:

· по назначению;

· по характеру усиливаемых сигналов;

· по полосе усиливаемых частот;

· по типу используемых усилительных элементов.

По назначению различают:

· усилители напряжения;

· усилители тока;

· усилители мощности.

По характеру усиливаемых сигналов различают:

· усилители гармонических сигналов;

· усилители импульсных сигналов.

По полосе усиливаемых частот различают:

· усилители постоянного тока (точнее, усилители медленно изменяющихся напряжений и токов), усиливающие электрические колебания любой частоты в пределах Df = 0 ¸ fВ, где fВ – верхняя граничная частота полосы усиления;

· усилители переменного тока, усиливающие только переменные составляющие сигнала в полосе частот Df = fН ¸ fB, где fН – нижняя граничная частота полосы усиления.

В свою очередь, усилители переменного тока делят на:

· усилители низкой частоты (УНЧ), предназначенные для усиления первичных (непреобразованных) электрических колебаний, несущих передаваемую и принимаемую информацию. К этому классу усилителей относят также усилители звуковых частот (УЗЧ), усиливающие электрические сигналы в полосе частот, воспринимаемых человеческим ухом.

· усилители высокой частоты (УВЧ), предназначенные для усиления электрических колебаний модулированной высокой частоты (например, радиосигналов, принимаемых приёмной антенной радиоприёмного устройства). Иногда из этого класса усилителей особо выделяют усилители промежуточной частоты (УПЧ), предназначенные для усиления электрических сигналов модулированной промежуточной (преобразованной) частоты, применяемой в радиоприёмных устройствах супергетеродинного типа. Такое разделение можно считать условным, т.к. главное, что объединяет эти усилители, ¾ это отношение высшей рабочей частоты к низшей (обычно fВ / fН £ 1,1) и подробно рассматриваются в курсе «Радиоприёмные устройства».

· избирательные (селективные) усилители, предназначенные для усиления электрических колебаний в очень узкой полосе частот, усиление которых резко падает за пределами этой полосы. Избирательные усилители подразделяют на резонансные, частотная характеристика которых имеет вид резонансной кривой, и полосовые, усиление которых почти постоянно в относительно узкой полосе частот и резко падает за её пределами.

· широкополосные усилители, предназначенные для усиления электрических сигналов с очень широким спектром усиливаемых частот (fВ может достигать нескольких десятков ГГц, а fН – может быть меньше сотен Гц). Такие усилители часто называют видеоусилителями, т.к. столь широкий спектр усиливаемых частот характерен для импульсных сигналов (видеосигналов).

По типу используемых усилительных элементов различают:

· ламповые усилители;

· транзисторные усилители;

· параметрические усилители;

· молекулярные усилители;

· усилители, построенные на усилительных элементах других типов.

I.3. Основные технические показатели усилителей.

Данные, характеризующие свойства усилителя, называются его показателями.

К основным показателям усилителя относятся:

· входные и выходные данные;

· коэффициент усиления;

· коэффициент полезного действия (КПД);

· частотные характеристики (амплитудно-частотная и фазо-частотная);

· переходная характеристика;

· амплитудная характеристика и динамический диапазон;

· нелинейные искажения.

В некоторых случаях приводятся и другие данные усилителя (габариты, вес, надёжность, стабильность работы и т.п.). Эти параметры, в зависимости от условий работы усилителя, иногда становятся определяющими. Однако часто они не имеют особого значения, поэтому здесь мы их рассматривать не будем.

Входные и выходные данные.

Входными данными усилителя являются: его входное напряжение (UВХ), входной ток (IВХ) и входная мощность сигнала (PВХ), при которых усилитель отдаёт в нагрузку заданную мощность, ток или напряжение, а также входное сопротивление усилителя (ZВх). Входное сопротивление усилителя в общем случае является комплексной величиной, но входные данные обычно определяют в условиях, при которых входное сопротивление можно считать чисто активным и равным RВХ; в этом случае:

UВХ = IВХ × RВХ;

RВХ = UВХ / IВХ; } ……………………………….. (1.1)

PВХ = UВХ ×IВХ.

К выходным данным относятся: расчётная, т.е. заданная техническими требованиями, мощность сигнала (РНАГР), отдаваемая усилителем в нагрузку и называемая выходной мощностью усилителя; выходное напряжение сигнала (UВЫХ) или выходной ток сигнала (IВЫХ), отдаваемые усилителем при работе его на расчётное сопротивление нагрузки (ZНАГР), а также выходное сопротивление усилителя (ZВЫХ).

Сопротивление нагрузки в общем случае является комплексной величиной, однако выходную мощность, ток и напряжение также обычно определяют в условиях, при которых нагрузку можно считать активной и равной RНАГР;

в этом случае:

UВЫХ = IВЫХ×RНАГР;

PВЫХ = IВЫХ ×UВЫХ = I2ВЫХ ×RНАГР = U2ВЫХ / RНАГР ……….. (1.2)

Выходное сопротивление усилителя в общем случае также комплексно, однако оно редко является существенным показателем, а поэтому обычно не указывается.

Коэффициенты усиления.

Различают следующие коэффициенты усиления:

1. По напряжению: КU = UВЫХ / UВХ. Обычно коэффициент усиления по напряжению называют просто коэффициентом усиления усилителя (К) и обозначают без индекса.

2. По току: КI = IВЫХ / IВХ.

3. По мощности: КР = РВЫХ / РВХ

Коэффициенты усиления по напряжению и по току являются комплексными величинами, т.к. выходное напряжение и ток из-за наличия в нагрузке и цепях усилителя реактивных составляющих сопротивления сдвинуты по фазе относительно входных значений напряжения и тока.

Для многокаскадного усилителя, содержащего n каскадов, общий коэффициент усиления определяется выражением

КS = К1 × К2 × К3 × ……. × Кn ……………….. (1.3)

Чаще наиболее удобным является представление коэффициента усиления в логарифмических единицах (децибелах), для чего пользуются соотношениями:

К(дб) = 20lgK; КI(дб) = 20lgKI ; KP(дб) = 10lgKР …… (1.4)

При этом коэффициент усиления многокаскадного усилителя в логарифмических единицах будет иметь выражение:

КS(дб) = К1 + К2 + К3 + ……. + Кn …….. (1.5)

Коэффициент полезного действия.

Для оценки экономичности работы мощных усилителей используют понятие коэффициента полезного действия (h), равного отношению отдаваемой усилителем в нагрузку мощности сигнала РНАГР к суммарной мощности РS, потребляемой им от всех источников питания:

h = РНАГР / РS …………………. (1,6)

Частотные характеристики.

Так как коэффициент усиления усилителя при изменении частоты изменяется как по модулю, так и по фазе, отдельные гармонические составляющие сложного электрического сигнала, подаваемого на вход усилителя, усиливаются неодинаково и сдвигаются на различное время; обе эти причины приводят к изменению формы выходного сигнала. Изменения формы сигнала, вызываемые неодинаковым усилением различных частот, называют частотными искажениями; искажения формы, вызываемые сдвигом фазы, вносимым усилителем, называют фазовыми искажениями. Как частотные, так и фазовые искажения обусловлены линейными элементами схемы усилителя, т.е. элементами, подчиняющимися закону Ома; поэтому их называют линейными искажениями.

Оценку вносимых усилителем частотных искажений производят по его амплитудно-частотной характеристике (АЧХ), представляющей собой зависимость модуля коэффициента усиления (К) от частоты при постоянной амплитуде сигнала на входе усилителя, т. е.

К = f (F) при UВХ = Const, где F – частота сигнала на входе усилителя.

АЧХ усилителя имеет вид, показанный на рис.1.1.

Рис.1.1. Частотная характеристика усилителя

Оценку частотных искажений, вносимых усилителем на любой частоте, производят с помощью коэффициента частотных искажений, обозначаемого через «М» и равного отношению коэффициента усиления усилителя на средней частоте к коэффициенту усиления на низшей (или высшей) частоте спектра усиливаемого сигнала:

МН = КСР / КН ;

МВ = КСР / КВ …………….. (1.7)

Чем больше величина М отличается от единицы, тем больше вносимые усилителем искажения. При М =1 частотные искажения в усилителе отсутствуют.

Коэффициент частотных искажений часто выражают в логарифмических единицах, при этом используется соотношение:

М (дБ) = 20 lgM ……………….. (1.8)

Допустимая величина частотных искажений зависит от назначения усилителя и может изменяться в широких пределах. Например, для усилителей звуковых частот радиоаппаратуры среднего качества допускают частотные искажения порядка ± (2 ¸ 4) дБ, почти незаметные на слух; для высококачественных усилителей, используемых в измерительной аппаратуре, допустимые искажения определяются необходимой точностью аппаратуры и могут составлять доли децибела.

Оценку фазовых искажений, вносимых усилителем, производят по его фазо-частотной (фазовой) характеристике, представляющей зависимость угла сдвига фазы j между выходным и входным напряжениями от частоты, построенной в линейном масштабе по обеим осям. Для удобства оценки фазовых искажений фазовую характеристику усилителя строят отдельно для нижних и верхних частот (рис.1.2а,б).

Рис.1.2. Фазовые характеристики и оценка фазовых искажений на частотах:

а – нижних; б – верхних.

По вертикальной оси здесь откладывают угол сдвига фазы j между выходным и входным напряжениями в градусах, а по горизонтальной – частоту f в герцах или круговую частоту w.

Идеальной фазовой характеристикой усилителя, при которой он не вносит фазовых искажений, является прямая, проходящая под любым углом через начало координат, так как при этом все гармонические составляющие сложного сигнала сдвигаются усилителем на одно и то же время, и форма выходного сигнала не отличается от формы входного. Поэтому вносимые усилителем на какой-либо произвольно выбранной частоте fi фазовые искажения оценивают не по абсолютному значению угла сдвига фазы j, а по разности ординат фазовой характеристики и касательной к ней, проведённой через начало координат (штриховые прямые на рис.1.2). В области верхних частот фазовые искажения ФВ обычно оказываются много меньше угла сдвига фазы на этих частотах jВ (см. рис.1.2б); в области же нижних частот касательная к фазовой характеристике вследствие сильного растяжения масштаба горизонтальной оси практически сливается с горизонтальной осью, и фазовые искажения ФН равны углу сдвига фазы  (рис.1.2а). Искажения сигнала из-за изменения фазовых соотношений между гармоническими составляющими на выходе усилителя иллюстрируются на рис.1.3.

Рис.1.3. К вопросу о фазовых искажениях.

На рис.1.3а, сплошной линией изображён входной сигнал, состоящий из синусоидального колебания и его третьей гармоники (третья гармоника изображена пунктиром). Если, например, при прохождении через усилитель первая и третья гармоника сдвигаются по фазе на 90º , то форма выходного сигнала (рис.1.3б, сплошная линия) будет резко отличаться от формы входного. Если же основное колебание (т.е. первая гармоника) сдвинется на 90º, а его третья гармоника - на 90 x 3 = 270º, т.е. сдвиг фазы будет пропорционален частоте (рис.1.3в), выходной сигнал по форме не отличается от входного, лишь запаздывая по времени по отношению к нему.

Исследования показали, что сдвиг фазы гармонических составляющих сложного периодического сигнала на слух практически не ощущается, несмотря на то, что при этом искажается его форма; поэтому в усилителях звуковых частот фазовые искажения обычно не ограничивают. В видеоусилителях телевизионных, радиолокационных сигналов и измерительных устройств (осциллографов и т.п.) фазовые искажения приводят к сильным отличиям изображения на экране от действительной формы электрического колебания. Например, сдвиг фазы основной гармоники сложного колебания на (7 – 10)° заметно искажает его форму. Поэтому для высококачественных усилителей в области нижних частот допускаются фазовые искажения не более (3 – 5)°. Фазовые искажения в области верхних частот меньше отражаются на форме изображения и даже в высококачественных усилителях допускаются до (20 – 30)°. Вследствие связи фазовой характеристики усилителя с его частотной характеристикой даже при проектировании видеоусилителей редко пользуются фазовой характеристикой, т.к. заданием АЧХ определённого вида обычно удаётся удержать фазовые искажения в допустимых пределах.

Переходная характеристика.

В импульсных усилителях (видеоусилителях) линейные искажения усиливаемых сигналов обусловлены переходными процессами установления токов и напряжений в цепях, содержащих реактивные сопротивления. Поэтому частотные и фазовые характеристики, определяющие свойства усилителя в установившемся режиме, здесь непригодны. Для оценки линейных искажений, называемых в импульсных усилителях переходными искажениями, используют переходную характеристику, представляющую собой зависимость мгновенного значения выходного напряжения (тока) сигнала от времени при мгновенном (скачкообразном) изменении напряжения (тока) во входной цепи усилителя. Подробно рассматривать этот вид искажений здесь мы не будем.

Амплитудная характеристика и динамический диапазон.

Амплитудной характеристикой усилителя называют зависимость амплитуды (или действующего значения) напряжения сигнала на выходе от амплитуды (или действующего значения) напряжения сигнала на входе (рис.1.4).

Рис.1.4. Амплитудная характеристика усилителя

Так как коэффициент усиления идеального усилителя представляет собой постоянную величину, не зависящую от величины входного сигнала, его амплитудная характеристика представляет собой прямую, проходящую через начало координат под углом, определяемым коэффициентом усиления усилителя (рис.1.4, пунктир). Амплитудная характеристика реального усилителя (рис.1.4, сплошная линия) не проходит через начало координат, а изгибается при малых входных напряжениях, пересекая вертикальную ось в точке UШ, так как при отсутствии входного сигнала выходное напряжение усилителя равно напряжению собственных шумов в его выходной цепи UШ. При слишком больших входных напряжениях реальная амплитудная характеристика также расходится с идеальной, изгибаясь вследствие перегрузки нелинейных усилительных элементов, содержащихся в схеме усилителя, в основном потому, что амплитуда сигнала на последнем (выходном) УЭ при этом выходит за пределы рабочего участка его характеристик.

Из рис.1.4 видно, что реальный усилитель может усиливать подводимые к его входу сигналы с напряжением не ниже UВХ.МИН., т.к. более слабые сигналы будут маскироваться напряжением собственных шумов усилителя UШ, и не выше UВХ.МАКС., т.к. иначе усилитель будет работать в нелинейном режиме и поэтому вносить очень большие нелинейные искажения. Отношение UВХ.МАКС. / UВХ.МИН. характеризует диапазон напряжений сигнала, усиливаемых данным усилителем без чрезмерных помех и искажений, и называется динамическим диапазоном усилителя:

ДУ = UВХ.МАКС. / UВХ.МИН.; ДУ(ДБ) = 20 lgДУ ………… (1.9)

В большинстве случаев напряжение сигнала, подводимое ко входу усилителя не является постоянной величиной, а изменяется от наибольшего значения UСИГН.МАКС. до наименьшего UСИГН.МИН.. Отношение наибольшего напряжения к наименьшему характеризует рабочий диапазон напряжений данного источника сигнала и называется динамическим диапазоном сигнала:

ДС = UСИГН.МАКС. / UСИГН.МИН.; ДС(ДБ) = 20 lgДС ………. (1.10)

Чтобы усилитель мог усиливать весь диапазон напряжений источника сигнала, динамический диапазон усилителя должен быть больше или равен динамическому диапазону сигнала, т.е. ДУ ³ ДС. Если это требование удовлетворить не удаётся, то для усиления с допустимыми искажениями и помехами сигналов, поступающих на усилитель, динамический диапазон сигнала сжимают при помощи регулировки усиления автоматической (АРУ) или ручной (РРУ).

Нелинейные искажения.

Нелинейными искажениями сигнала называют изменения его формы, вызываемые нелинейными элементами, входящими в схему усилителя. Основными причинами появления в усилителе нелинейных искажений являются:

1. Нелинейность характеристик УЭ (транзисторов, электронных ламп и др.)

2. Нелинейность характеристики намагничивания магнитных материалов сердечников трансформаторов и дросселей усилителя (если они присутствуют в схеме).

На рис.1.5а показано, как нелинейность входной характеристики транзистора при подведении к его входу гармонического сигнала UВХ. приводит к нелинейным искажениям формы входного тока.

Рис.1.5. Возникновение нелинейных искажений вследствие:

а – нелинейности входной характеристики транзистора;

б – нелинейности коэффициента усиления тока транзистора.

Так как выходной ток транзистора (ток коллектора) в первом приближении пропорционален входному току (току базы), нелинейные искажения последнего передаются в выходную цепь.

Снижение коэффициента усиления тока при больших амплитудах подводимого к транзистору сигнала приводит к тому, что даже при чисто синусоидальной форме входного тока выходной ток оказывается несинусоидальным, и, следовательно, содержит нелинейные искажения, возникающие уже в выходной цепи. Это иллюстрируется рис.1.5б, из которого видно, что при синусоидальной форме входного тока у выходного тока сплющивается верхушка положительной полуволны, а не нижней, как имеет место при нелинейных искажениях, вносимых входной цепью (рис.1.5а). В результате при подаче на транзистор сигналов большой амплитуды вершина отрицательного полупериода выходного тока притупляется от криволинейности начала входной характеристики, а вершина положительного – от сближения выходных характеристик при больших токах.

Чем больше вносимые усилителем нелинейные искажения, тем сильнее отличается от синусоиды форма выходного сигнала при подаче во входную цепь гармонической ЭДС и тем больше относительная величина высших гармоник в выходном сигнале. Поэтому нелинейные искажения в усилителях можно оценивать коэффициентом гармоник КГ, представляющим собой отношение действующего значения появившихся в выходном сигнале высших гармоник тока или напряжения к действующему значению тока или напряжения первой гармоники при подаче на вход усилителя синусоидальной ЭДС и при активном сопротивлении нагрузки, не зависящем от частоты:

……………..…… (1.11)

где U1, U2, U3 и т.д. – действующие или амплитудные значения соответственно первой, второй, третьей и т.д. гармоник выходного напряжения;

I1, I2, I3 и т.д. – действующие или амплитудные значения соответственно первой, второй, третьей и т.д. гармоник выходного тока.

При расчётах иногда используют коэффициенты второй гармоники КГ2, третьей КГ3 и т.д., равные:

КГ2 = U2 / U1; КГ3 = U3 / U1; KГ4 = U4 / U1 ……… (1.12).

Отсюда видно, что

КГ = Ö КГ22 + КГ32 + КГ42 + …………………….. (1.13).

Допустимая величина коэффициента гармоник зависит от назначения усилителя. В усилителях высококачественного усиления речи и музыки допускают КГ @ (0,1¸1)% ; в усилителях среднего качества – до (5 ¸ 8)%.

(Для усилителей импульсных сигналов оценка нелинейности по искажениям синусоидального сигнала при помощи коэффициента гармоник не показательна, и для них используют другие методы).

Контрольные вопросы:

1. Дайте определение коэффициенту усиления усилителя по напряжению, току и мощности. Единицы измерения коэффициентов усиления.

2. Дайте определение видам искажений и объясните причины их появления.

3. Как связаны между собой частотные и фазовые искажения усилителя?

4. Причины появления нелинейных искажений в усилителях. Единицы измерения нелинейных искажений.

5. Дайте определение амплитудной характеристике усилителя и объясните график амплитудной характеристики.

6. Дайте определение динамического диапазона усилителя и объясните его связь с амплитудной характеристикой.

7. Дайте определение амплитудно-частотной характеристике усилителя и объясните график АЧХ.

Задачи и упражнения:

1. Определить коэффициент усиления второго каскада двухкаскадного усилителя, имеющего коэффициент усиления 1000, если коэффициент усиления первого каскада равен 40 дБ.

2. Напряжение на входе усилителя UВХ. = 3 мВ, напряжение на выходе UВЫХ.= 150 В. Определить коэффициент усиления и выразить его в децибелах.

3. Определить, скольким децибелам соответствует усиления коэффициент усиления по напряжению равен 75?

4. Определить коэффициент усиления 3-каскадного усилителя НЧ и выразить его в децибелах, если коэффициент усиления первого каскада равен 30, второго каскада – 40 и третьего каскада – 20.

5. Определить коэффициент усиления первого каскада двухкаскадного усилителя, имеющего коэффициент усиления 66 дБ, если коэффициент усиления второго каскада равен 40.

6. Требуется получить от усилителя коэффициент усиления 2000. Оконечный каскад даёт усиление 6 дБ, а каждый из каскадов предварительного усиления даёт по 30 дБ. Определить число каскадов данного усилителя.

7. УНЧ, нагруженный активным сопротивлением 500 Ом, развивает на выходе напряжение 30 В при подводимой мощности 10 –3 Вт. Определить коэффициент усиления по мощности в дБ.

8. Коэффициент усиления УНЧ на нижних, средних и верхних частотах спектра равен соответственно 24, 30 и 40. Определить коэффициент частотных искажений в дБ.

9. УНЧ имеет частотные искажения на нижней и верхней частотах спектра, равные соответственно 3 дБ и – 2 дБ. Определить коэффициенты усиления на нижней и верхней частотах, если усиление на средней частоте равно 55.

II.1. Блок-схема и принципиальная схема усилителя.

Обычно усиление, даваемое одним каскадом, оказывается недостаточным, а поэтому усилитель собирают из нескольких каскадов, передавая усиленный сигнал от предыдущего каскада к следующему.

Для упрощённого и наглядного изображения схем электронных устройств, в том числе и усилительных схем, часто используют блок-схему, называемую также функциональной или структурной схемой, на которой прямоугольниками с надписями показывают основные части (узлы) устройства (рис.2.1).

Рис.2.1. Блок-схема усилителя.

Такими частями являются:

· входное устройство;

· предварительный усилитель;

· мощный усилитель;

· выходное устройство.

Входное устройство.

Входное устройство служит:

· для разделения (развязки) по постоянной составляющей тока или напряжения источника сигнала с входной цепью первого каскада усилителя;

· для симметрирования входной цепи усилителя;

· для согласования входного сопротивления усилителя с выходным сопротивлением источника сигнала;

· для повышения напряжения сигнала на входе первого каскада.

Симметрированием цепи называют превращение её из несимметричной, имеющей один заземлённый провод, в симметричную, оба провода которой не заземлены и несут равные и противоположные по отношению к земле напряжения сигнала. Симметрирование позволяет сильно уменьшить влияние на цепь посторонних источников помех.

Согласованием двух соединяемых цепей называют приведение входного сопротивления одной цепи к равенству выходному сопротивлению другой. Согласование устраняет отражение сигнала в месте соединения цепей, могущее вызвать появление частотных, фазовых и переходных искажений, а также позволяет получить наибольшее напряжение сигнала на входе усилителя. При возможности непосредственного включения источника сигнала во входную цепь усилителя входное устройство не применяют. Некоторые схемы входных устройств показаны на рис.2.2.

а) б)

в)

Рис.2.2. Схемы входных устройств:

а – для отделения постоянной составляющей; б– то же с регулятором

усиления; в – для согласования сопротивлений и симметрирования.

Предварительный усилитель.

Предварительный усилитель служит для усиления напряжения, тока или мощности сигнала до величины, необходимой для подачи на вход мощного усилителя. Предварительный усилитель может состоять из одного или нескольких каскадов, количество которых определяется необходимым усилением. Если источник сигнала даёт достаточную для подачи на вход мощного усилителя мощность сигнала, то предварительный усилитель в составе устройства не нужен.

Мощный усилитель.

Мощный усилитель предназначен для отдачи в нагрузку заданной мощности усиленного сигнала. Усилители большой мощности иногда имеют несколько каскадов мощного усиления. Если нагрузкой усилителя является небольшая ёмкость (например, ёмкость модулятор-катод кинескопа, или ёмкость между отклоняющими пластинами осциллографической трубки и т.п.), то на нагрузке требуется обеспечить лишь напряжение сигнала определённой величины, а не заданную выходную мощность; в этом случае мощный усилитель не нужен, и последний каскад усилителя будет каскадом предварительного усиления.

Выходное устройство.

Выходное устройство служит для передачи усиленного сигнала из выходной цепи последнего усилительного каскада в нагрузку и применяется тогда, когда непосредственное подключение нагрузки к выходной цепи невозможно или нецелесообразно. Выходное устройство применяют:

· для разделения (развязки) по постоянному току или напряжению выходной цепи последнего каскада усиления и нагрузки;

· для симметрирования выходной цепи;

· при необходимости - для согласования выходного сопротивления усилителя с сопротивлением нагрузки.

На принципиальной схеме усилителя, называемой также электрической схемой, показывают все электрические детали, входящие в усилитель, и соединения между ними. На этой схеме часто указывают основные электрические данные компонентов (сопротивление и допустимую мощность резисторов, ёмкость и максимально допустимое напряжение конденсаторов и т.д.). Иногда радиокомпоненты на принципиальной схеме снабжают только номерами, а полная информация о них приводится в прилагаемой спецификации.

Усиление электрических колебаний в радиоэлектронных устройствах осуществляется с помощью электронных ламп и транзисторов. Здесь важно понять, почему лампа или транзистор могут усиливать.

Принцип усиления поясняет схема на рис.2.3.

Рис. 2.3. Принцип усиления электрических сигналов.

Последовательно с источником питания с напряжением Епит включены два сопротивления: постоянное сопротивление нагрузки RН и изменяемое сопротивление R~. Роль изменяемого сопротивления играет транзистор или лампа, которые под воздействием управляющего напряжения (в лампе или полевом транзисторе) или тока (в биполярном транзисторе), подводимого к входу усилителя, изменяют своё внутреннее сопротивление постоянному току. Изменение внутреннего сопротивления может осуществляться в очень широких пределах практически без затраты энергии или при очень малой её трате. В то же время мощность, выделяющаяся в нагрузке, может быть значительной. Чтобы выходное напряжение было похожим по форме на входное, требуется плавное изменение внутреннего сопротивления лампы или транзистора, т.е. необходим так называемый усилительный режим их работы.

Рассмотрим принцип работы резистивного усилителя на транзисторе с общим эмиттером, применяя метод графического анализа процессов и используя статические характеристики транзистора. Схема усилителя изображена на рис.2.4.

Рис. 2.4. Графический анализ работы транзисторного усилителя.

1. Обратимся к семейству статических коллекторных характеристик транзистора, включённого по схеме с общим эмиттером (ОЭ), где параметром является ток базы iБ. При iБ = const ток коллектора является функцией только коллекторного напряжения:

IК = f(UКЭ) ……… (2.1).

В реальных условиях, т.е. при наличии нагрузки в цепи коллектора, изменение коллекторного тока приводит к изменению коллекторного напряжения, причём çUКç = çЕКç- IК × RК, откуда следует

½ЕК½ - ½UК½

IК = ¾¾¾¾¾¾ ……… (2.2).

Выражение (2.2) представляет собой уравнение прямой линии в отрезках на осях в системе координат UК, IК. Проанализируем это уравнение.

· при IК = 0 ½UК½ = ½ЕК½, что соответствует режиму холостого хода;

½ЕК½

· при UК = 0 IК = ¾¾¾,

RK

что соответствует режиму короткого замыкания.

Значения ЕК и UK взяты по абсолютной величине, потому что рассуждения справедливы для транзисторов любой структуры.

Соединив точки, отложенные на осях координат, получим прямую, называемую нагрузочной прямой постоянного тока.

В выражениях (2.1) и (2.2) ток IК и напряжение UК имеют одинаковое значение, поэтому эти выражения можно рассматривать как систему двух уравнений с двумя неизвестными: IК и UК. Уравнение (2.1) выражено графически, а уравнение (2.2) – задано аналитически. Решение этой системы уравнений проще выполнить графическим способом, т.е. найти точку пересечения нагрузочной прямой с коллекторной статической характеристикой, соответствующей току iБ, протекающему в цепи базы. Назовём эту точку изображающей точкой (М). При отсутствии сигнала на входе усилителя изображающая точка определяет положение рабочей точки (Р.Т.) на пересечении нагрузочной прямой со статической выходной характеристикой транзистора при определённом токе базы и называется точкой покоя (М0 ). Её координаты определяют ток коллектора покоя (IКП ) и напряжение коллектора покоя (UКП ) и связаны уравнением:

½UКП½ = ½ЕК½– IКП×RK ………………… (2.3).

Для определения параметров выходного сигнала в динамическом режиме (с подключённым входным сигналом и нагрузкой) используют нагрузочную прямую переменного тока (динамическую линию нагрузки). Для этого определяют сопротивление нагрузки переменному току, которое определяется параллельно включёнными сопротивлением в цепи коллектора (RК) и сопротивлением нагрузки (RН), на которую работает данный усилительный каскад:

RК ×RН

R~= ¾¾¾¾ …………………… (2.4).

RК + RН

Подробнее об этом в разделе «IV. Работа усилительного элемента в схеме».

2. Обратимся теперь к входным характеристикам транзистора. При отсутствии сигнала на входе в цепи базы действует только напряжение смещения ЕБП, соответствующее состоянию покоя транзистора. При этом в цепи базы будет протекать ток базы покоя (IБП ).

Динамической входной характеристикой транзистора называется зависимость тока базы от напряжения на базе в схеме с ОЭ при действии входного сигнала и наличии сопротивления нагрузки в цепи коллектора (RK). Обратим внимание, что напряжение на коллекторе при наличии нагрузки не будет величиной постоянной. Это следует из выражения (2.2).

Динамическая входная характеристика транзистора может быть построена по его динамической выходной характеристике. Однако особенности работы транзистора позволяют сделать вывод, что его динамическая входная характеристика практически совпадает со статической. Поэтому определение входных данных транзисторного каскада без большой погрешности производят по статической характеристике. На рис.2.5 показано семейство входных статических характеристик для схемы с ОЭ.

Рис.2.5. Семейство входных статических характеристик транзистора.

Видно, что при изменении напряжения на коллекторе в довольно больших пределах (0,2 ¸ 10) В, т.е. во всём рабочем диапазоне коллекторных напряжений, входная характеристика изменяется очень мало, что характерно для большинства маломощных транзисторов. Поэтому для расчёта транзисторных усилительных каскадов используют справочные данные входных статических характеристик для значений напряжения на коллекторе ½UК½> 0.

3. Выбрав на входной динамической характеристике точку, находящуюся приблизительно на середине относительно прямолинейного участка, можно определить, какой величине тока базы IБП соответствует точка покоя М0 и соответствующее этой величине напряжение смещения на базе ЕБП.

При линейном режиме работы, т.е. при усилении сигнала без искажений, максимальная амплитуда ЭДС источника входного сигнала е = Еm× Sin wt не должна превышать половины значения прямолинейного участка входной характеристики. Изменение положения изображающей точки на входной характеристике при действии сигнала на входе будет происходить в пределах отрезка АВ.

Зная величину базового тока покоя IБП, можно найти рабочую точку на семействе выходных характеристик, соответствующую состоянию покоя транзистора. Она лежит на пересечении нагрузочной прямой со статической коллекторной характеристикой, соответствующей базовому току IБП.

Изменение базового тока по закону входного напряжения обусловливает соответствующее перемещение изображающей точки М0 в системе координат UK, IK выходных характеристик по нагрузочной прямой также в пределах отрезка АВ и соответствующее изменение коллекторного тока IK и коллекторного напряжения UK.. Переменная составляющая напряжения на коллекторе представляет собой усиленное выходное напряжение.

Из графического анализа работы усилителя можно сделать следующие выводы:

1. При линейном усилении двухполярного сигнала, например, синусоиды, рабочая точка М0 (точка покоя) выбирается на середине прямолинейного участка входной характеристики транзистора;

2. При усилении сигнала появляются постоянные составляющие токов в цепи базы и коллектора;

3. В усилителе с ОЭ фаза выходного напряжения противоположна фазе входного напряжения.

4. Весьма малые изменения тока базы во входной цепи приводят к сильному изменению тока коллектора. В этом проявляется эффект усиления электрического сигнала.

Путём изменения тока покоя базы IБП, называемого током смещения, можно смещать рабочую точку по нагрузочной прямой в ту или иную область коллекторных характеристик, меняя тем самым режим работы усилителя.

Управлять током коллектора с помощью изменения тока базы можно только в пределах 0 £ IБ £ IБН (где IБН – ток насыщения базы), т.е. когда изображающая точка (М) находится на участке NC нагрузочной прямой (см. рис. «Графический анализ»). Соответствующий этим условиям режим работы транзистора называется активным. В точке С ток через транзистор не проходит, и этот режим называется режимом отсечки. В точке N рабочая точка достигнет линии критического режима транзистора. Дальнейшее увеличение базового тока не вызывает увеличения тока коллектора; транзистор, как говорят, находится в режиме насыщения. В режиме насыщения напряжение на коллекторе и на базе составляет сотые доли вольта. На этом основании при анализе процессов в импульсных устройствах на транзисторах удобно с небольшой погрешностью принимать насыщенный транзистор за короткозамкнутую цепь.

В схеме усилителя с ОЭ входными являются: переменные составляющие базового тока IБ~ = IВХ и базового напряжения UБ~ = UВХ, а выходными – переменная составляющая коллекторного тока IК~ = IВЫХ. и коллекторного напряжения UК~ = UВЫХ. Поэтому коэффициенты усиления по току и напряжению определяются соотношениями

Кi = IВЫХ./ IВХ; КU = К = UВЫХ / UВХ …………. (2.4).

Как выбрать усилитель сотовой связи и интернета

Усилитель класса ЭА - фото 31 - изображение 31

Чтобы разобраться в этом вопросе, нужно понимать основные принципы и условия работы данного устройства. Усилитель сотовой связи или по-другому репитер, повторитель сигнала, решает поставленную перед ним задачу в связке с другими компонентами - приёмопередающими антеннами - внешней и внутренней, а также высокочастотным кабелем, объединяющем все устройства в единую систему усиления сигнала.

В зависимости от сложности поставленной задачи, в такую систему могут дополнительно входить и другие высокочастотные компоненты, такие как сплиттеры, ответвители сигнала, бустеры, антенные усилители и прочие. Как правило, необходимость в дополнительном оборудовании возникает при конструировании сложных систем усиления сигнала на крупных торговых и промышленных объектах.

В большинстве же случаев, для решения бытовых задач усиления сотового сигнала, достаточно готового комплекта, состоящего из репитера, двух антенн и кабеля. Тонкость в том, чтобы правильно подобрать комплект, подходящий по параметрам. Эти параметры мы и будем рассматривать в данной статье, но начнём с принципа работы.

Принцип работы усилителя сотовой связи

Принцип работы комплекта усиления сотовой связи заключается в передаче радиосигнала из зоны уверенного приёма в места, где сигнала нет совсем либо он очень слабый. Например, на улице уровень сигнала средний или высокий, а в помещении он пропадает либо снижается, и связь начинает прерываться. Схематично процесс усиления выглядит следующим образом:

Слабый сигнал от базовой станции оператора улавливается внешней антенной, расположенной на улице. От внешней антенны сигнал по высокочастотному коаксиальному кабелю передаётся на репитер. Репитер усиливает сигнал и отправляет его дальше по кабелю на комнатную антенну. Комнатная антенна обменивается информацией с мобильными устройствами и отправляет сигнал в обратном направлении.

Что входит в комплект?

В комплект входит сам репитер, уличная и комнатная антенны, кабельная сборка (провода, соединяющие репитер с внешней и внутренней антеннами), блок питания репитера, крепёж и подробная инструкция по установке и эксплуатации комплекта. Дополнительно можно приобрести кронштейны и мачты для крепления уличной антенны к стене здания, а также грозозащиту, предотвращающую повреждение оборудования от электростатического напряжения, возникающего при грозе.

Теперь, когда мы понимаем что из себя представляет готовый комплект усиления сотовой связи, давайте определимся, где и для чего мы будем усиливать сигнал. Это важно. Ведь для того, чтобы максимально эффективно решить поставленную задачу по улучшению плохой связи, нужно учесть существующие условия и тот результат, который Вы ожидаете от усилителя.

Усиление сотового сигнала на даче

Как правило, в сельской местности вышки сотовых операторов расположены далеко друг от друга. Их ставят в первую очередь вблизи к более-менее крупным населённым пунктам. Если Ваш дом расположен на значительном удалении от вышек базовых станций, то, в данном случае, предпочтительнее выбрать комплект с репитером, работающим на низких частотах, например 800 и 900 МГц. Эти частоты распространяются на большие расстояние, а значит существует возможность стабильного приёма и передачи сигнала от базовой станции до улавливающей антенны и обратно. Частота 900 МГц до сих пор самая распространённая в области сотовой связи. На ней работают почти все сотовые операторы. Исключением является Теле2, данный оператор не использует этот диапазон на территории РФ.

Частота 800 МГц поддерживается основными сотовыми операторами и позволяет передавать сигнал высокоскоростного мобильного интернета в стандарте LTE-800 (4G) на расстояние до 13 километров.

В частотном диапазоне 900 МГц работает два стандарта связи - GSM-900 (2G) и UMTS-900 (3G). Это означает, что используя усилитель сотовой связи с рабочей частотой 900 МГц, Вы можете улучшить не только голосовую связь, но и мобильный интернет в стандарте 3G. Однако, надо иметь ввиду, что не все сотовые операторы поддерживают передачу интернета на этой частоте.

Если Ваш дом находится не очень далеко от населённого пункта, есть возможность "поймать" более высокую частоту, например, 1800 Мгц или 2100 МГц. Тогда становятся доступны полноценный скоростной интернет и голосовая связь в стандарте 3G (UMTS-2100), а также высокоскоростной интернет в стандарте LTE-1800 (4G) и голосовая связь в стандарте GSM-1800 (2G) с более широкой полосой пропускания.

В стандартах 3G и 4G работает современная голосовая связь на смартфонах. Они автоматически выбирают более высокую частоту даже в том случае, когда её сигнал очень слабый. Отсюда известная многим проблема пропадания собеседника и прерывания связи. Устройство "цепляется" за слабый сигнал высокой частоты, а при полной его потере переключается на более низкую, но устойчивую.

Кнопочные телефоны старого образца работают в стандарте 2G в частотных диапазонах GSM-900 и GSM-1800 и также предпочитают верхнюю частоту при её наличии.

Усиление сотового сигнала в квартире

А если нужно усилить сигнал в квартире? Да, даже в крупном городе, где находятся сотни базовых станций, можно остаться без связи. Такая проблема актуальна для жителей плотной городской застройки, владельцев квартир на верхних этажах, в новостройках, в домах с толстыми стенами, во дворах «колодцах» и т. д.

Тут поможет комплект усиления связи для квартиры. Особенность городского комплекта в компактной уличной антенне и более высоких рабочих частотах, хотя многие комплекты для дачи можно тоже с успехом применять в городе. Но, так как в крупном городе присутствуют стандарты связи GSM, 3G и 4G на верхних частотах, разумно выбирать усилитель, поддерживающий эти стандарты. Это GSM-1800, UMTS-2100 (3G) и LTE-2600 (4G).

Выше мы описали два самых частых случая, когда нужно усилить сигнал. Но нет такого репитера, который идеален для дачи, но совершенно бесполезен в городе. Большинство комплектов универсальны. С их помощью можно усилить сигнал в загородном доме, на даче, в офисе, гараже или квартире. Просто есть комплекты с параметрами, больше подходящими для сельской местности, где расстояние до вышек базовых станций больше, а есть те, которые актуальнее использовать в черте города. Чтобы выбрать комплект, наиболее отвечающий Вашим условиям, нужно определить, в каком стандарте и на какой частоте передаётся сигнал сотовой связи в районе Вашего дома.

Определение частотного диапазона

Рассмотрим, как можно самостоятельно определить частотный диапазон и другие параметры. Для этого можно воспользоваться бесплатными приложениями для смартфонов, такими как Network Cell Info Lite или Сотовые Вышки, Локатор. Замеры нужно будет провести в разных режимах подключения - 4G, 3G, 2G. Для этого в настройках смартфона необходимо последовательно переключать тип сети и сверяться с показаниями из приложения.

Рассмотрим пример для Андроид с использованием приложения Сотовые Вышки, Локатор:

- Зайти в Настройки телефона и выбрать пункт Сеть и Интернет

- Затем выбрать пункт Мобильная сеть

- Перейти в Расширенные настройки

- Выбрать пункт Предпочтительный тип сети

Это можно сделать и из настроек самого приложения: нажать на меню (три вертикальные точки в правом верхнем углу экрана), выбрать пункт Настройки сети =>> Расширенные настройки =>> Предпочтительный тип сети

Также в выпадающем меню можно переключиться на другую сим-карту, выбрав "Переключиться на СИМ2"

Поочерёдно выбирая режимы связи, проверяем, какой тип соединения показывает приложение.

В верхнем левом углу экрана (обведено жёлтой рамочкой) отображается обозначение частотного диапазона. Чуть ниже можно увидеть уровень сигнала в дБ. Чем больше число, тем слабее сигнал! Хорошим считается сигнал до -100 дБ. Наша задача состоит в том, чтобы от каждого стандарта выбрать приоритетный частотный диапазон, который проходит внутрь помещения, и усилить именно его. Не стоит торопиться с определением типа соединения, лучше подождать минуту-другую пока устройство выберет приоритетную частоту. Например, G900 может смениться на G1800. Значит частота 1800 МГц присутствует в помещении, и даже если её сигнал слабее, чем у 900 МГц, телефон предпочтёт работать на более высокой частоте.

Приложение Network Cell Info Lite удобно тем, что наглядно показывает уровень входящего сигнала. В стартовом разделе "Датчики" показана шкала, наподобие спидометра. Она позволяет оценить качество связи в определённом стандарте. Если стрелка в зелёной зоне, значит сигнал хороший, усиливать его не требуется.

Нетворк Селл не показывает частотный диапазон в мегагерцах, но его можно узнать из показателя Band. Внизу страницы приведена таблица соответствия значений Band и частотного диапазона в МГц. Например, Band 1 - это 2100 МГц в стандарте UMTS (3G).

Плюсом этих приложений является и то, что они показывают расположение вышек базовых станций. Это понадобится при установке внешней антенны. Её нужно будет сориентировать в направлении базовой станции. При этом если между точкой, где располагается антенна, и базовой станцией есть препятствия, такие как высокие деревья, строения, то лучше направить антенну в свободное от препятствий пространство.

Итак, определив частотные диапазоны, на которых передаётся сигнал в районе Вашего дома, можно переходить к выбору комплекта, но мы немного остановимся на таком параметре, как мощность усиления сигнала.

Максимальное усиление комплекта

Вы можете обратить внимание на то, что коэффициент усиления в дБ у разных репитеров отличается не сильно (60-65-70 дБ), при этом площадь действия может отличаться в разы. На самом деле зависимость здесь не линейная, а логарифмическая. Каждые +3-5 дБ удваивают мощность. Поэтому, комплект с максимальным усилением 83 дБ может покрыть площадь вдвое бóльшую, чем комплект с усилением 78 дБ. В характеристиках каждого репитера и готового комплекта указана максимальная площадь действия в помещениях. Но не только величина помещения влияет на выбор мощности усилителя. Очень слабый входящий сигнал может служить причиной выбора более мощного усилителя, способного покрыть площадь бóльшую, чем необходимо.

Установка комплекта

Рекомендуем начать с установки уличной антенны. Вы уже определили направление до ближайшей базовой станции с помощью мобильного приложения. Теперь нужно выбрать место для крепления антенны к стене. Если мы говорим про загородный дом, то желательно закрепить антенну повыше. Так на пути распространения сигнала окажется меньше помех. В случае, когда вокруг дома есть высокая растительность, можно установить внешнюю антенну на специальную мачту. При установке комплекта усиления связи в квартире или офисе внешнюю антенну, как правило, крепят на стене рядом с окном или на раме самого окна.

Затем нужно завести кабель от внешней антенны внутрь помещения. Это можно сделать пробурив отверстие в стене либо в межэтажном перекрытии в случае, если антенна установлена на крыше.

Выбираем место для крепления репитера. Его можно закрепить на стене или мебели с помощью крепежа, входящего в комплект. Нужно чтобы поблизости была розетка 220 вольт для подключения репитера к сети.

Потом подсоединяем комнатную антенну, и крепим её либо на стене, либо на потолке, на сколько хватит кабеля. Длина кабеля внутренней антенны обычно 2 метра. Если по каким-то причинам требуется установить антенну дальше от репитера, можно дополнительно приобрести отдельную кабельную сборку. Схемы встройки будут приведены ниже.

Важный момент при выборе места для установки антенн. Внешняя и внутренняя антенны должны быть расположены друг от друга как можно дальше. Это нужно для того, чтобы не происходило закольцовки сигнала. Это когда сигнал от внутренней антенны улавливается внешней. В результате возникают помехи, и система перестаёт работать эффективно. Если комнатная антенна направленного действия, её не следует направлять в ту сторону, где установлена уличная антенна.

Варианты соединения элементов комплекта

Стандартная схема:

Если нужно удлинить кабель комнатной антенны:

Если нужно удлинить кабель уличной антенны:

Важно! Не включайте репитер без подсоединённых антенн! В этом случае репитер может выйти из строя.

В чём польза от установки репитера? Важно знать!

Помимо обеспечения помещения устойчивой сотовой связью, комплект репитера снижает уровень СВЧ-излучения сотовых телефонов и других мобильных устройств. Известно, что сам мобильный телефон является источником электромагнитного излучения. Чем слабее входящий сигнал от базовой станции, тем сильнее телефон начинает излучать, пытаясь поддерживать связь с вышкой сотового оператора. Уровень излучения в условиях плохого приёма может достигать 1,5-2 Вт, тогда как самый мощный репитер имеет мощность излучения не более 0,2 Вт для каждого частотного диапазона, то есть в 10 раз ниже!

После установки комплекта усиления связи, мобильные устройства оказываются в благоприятных для себя условиях приёма сигнала и снижают уровень собственного излучения. Оно уменьшается в десятки раз и не превышает 0,02 Вт. Не сложно посчитать, что суммарный уровень излучения системы будет значительно ниже изначального, когда телефон в поисках сети работал на максимальной мощности. Кроме того, нужно понимать, что телефон во время разговора мы держим в непосредственной близости от головы, а антенна репитера находится на расстоянии нескольких метров. Электромагнитное воздействие значительно снижается с увеличением расстояния от источника ЭМ волн.

Из вышесказанного можно сделать вывод, что комплект усиления связи снижает негативное воздействие сотового телефона и других мобильных устройств.

Справочная информация

Соответствие стандартов связи и частотных диапазонов

* - Абсолютный радиочастотный диапазон значений.

** - FDD (Frequency Division Duplex) использует частотное разделение каналов DL / UL, что делает возможным усиление этого сигнала активным усилителем (репитером).

*** - TDD (Time Division Duplex) использует временное разделение каналов DL / UL, что делает невозможным усиление этого сигнала активным усилителем (репитером).

Частотные диапазоны 4G LTE российских операторов связи

* - Способ двухсторонней связи с использованием приёмопередающих устройств.

VegaKit

Найдены дубликаты

Stern1371

Усилитель на транзисторах: виды, схемы, простые и сложные

Операционный усилитель для чайников - фото 32 - изображение 32

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах – музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Что такое операционный усилитель ? - фото 33 - изображение 33

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин – практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Правильное питание ОУ - изображение 34 - изображение 34

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» – ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно – чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД – свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Обратная связь ОУ - фотография 35 - изображение 35

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток – полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.

«Альтернативные» конструкции

Схемы включения операционных усилителей - фотография 36 - изображение 36

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Классы усилителей сигнала и мощности - фотография 37 - изображение 37

Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

Классификация - фото 38 - изображение 38

При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 – 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h21 – 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Усилитель класса А - изображение 39 - изображение 39

Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое – обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Усилитель класса B - изображение 40 - изображение 40

Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

Усилитель класса AB - фото 41 - изображение 41

Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, – с общим эмиттером. Одна особенность – необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.

Усилитель класса C - изображение 42 - изображение 42

Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

Другие распространенные классы усилителей - фотография 43 - изображение 43

В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина – повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Краткое описание классов усилителей - изображение 44 - изображение 44

Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог – например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток - 0,3-0,5 А.

Таблица классов усилителей по углу проводимости - изображение 45 - изображение 45

Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора – он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку – наушники.

Коснитесь входа усилителя пальцем – должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука – выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

Усилитель класса ЭА

Принцип работы усилителя низкой частоты на транзисторах - фото 46 - изображение 46

Пишет I-POMAN в своём блоге.

Этот усилитель мощности звуковой частоты создавался с соблюдением следующих условий:1. Усилитель должен быть прост в изготовлении и настройке, и доступен для повторения.2. УМ должен обладать как мягкостью, так и жёсткостью звука в зависимости от фонограммы.3. Схема УМЗЧ должна быть полностью симметрична.4. Все качественные параметры должны задаваться операционным усилителем, а выходные каскады их точно повторять.5. Использование только комплементарных пар транзисторов для симметрии схем.6. Возможность выбора режима работы оконечных каскадов (А, ЭА, АВ+ЭА). (В любом из этих режимов выходные транзисторы закрываются и открываются плавно).7. Применение полевых транзисторов без изменения схемы (только подстройкой смещения).8. Нечувствительность к просадкам питания (не требуется стабилизированный блок питания).9. Экономичность и возможность задать различные тепловые режимы для возможности встроить УМЗЧ в уже имеющуюся аппаратуру.10. Формирование режимов транзисторов только полезным сигналом относительно стабильного напряжения, для снижения искажений от задающих режимы по току цепей и просадок питания.

Принцип работы

Изначально этот УМЗЧ (рис.1) разрабатывался как макет для исследования нелинейных искажений в усилителях. Входные каскады вообще не должны были иметь искажений типа “ступенька”. Для этого наиболее подходят каскады как бы подключенные в параллель между + и – питания (VT1,VT2), за что и получили название “параллельные”. Для получения большого коэффициента усиления и большой скорости нарастания напряжения были созданы параллельные композитные каскады VT1-VT3 и VT2-VT4. Эмиттеры VT1(VT2) были подключены к потенциалу ниже отрицательного входного напряжения, чтобы получить возможность регулирования момента и характера закрывания VT5-VT6 (режим А, ЭА, АВ, В). Затем возникла идея подавать раздельные напряжения обратной связи ООС (на эмиттеры VT1-VT2 через R5-R6), чтобы в отрицательную полуволну понижать потенциал эмиттера VT1 (в положительную — VT2), препятствуя резкому закрыванию. Эмиттеры транзисторов оказались включены в делитель (он же и ООС) между опорным и выходным напряжениями, что позволяет выбирать характер и момент их закрывания и открывания в зависимости от уровня звукового сигнала, и таким образом формировать токи покоя в режиме ЭА.

Усилители постоянного тока: схемы, принцип действия, формулы - фотография 47 - изображение 47

Рис.1. Принцип действия усилителя на композитных параллельных каскадах.

Что такое операционный усилитель? - изображение 48 - изображение 48

Рис.2. Типы нелинейных искажений в усилителях мощности.

Результаты исследований сведены в осциллограмму выходных токов (рис.2), где (1) – ток в нагрузке, +I – ток VT5, -I – ток VT6. Режимы устанавливались умышленно для определения порога появления искажений. Точка 2 – искажения типа “ступенька” в режиме В, когда VT5 резко закрылся, а VT6 ещё не открылся. В т.2 возможны всплески сигнала с другой частотой, присутствующей в составе сигнала или при подаче на вход усилителя одновременно двух частот. Такой УМ имеет большой коэффициент гармоник, ВЧ в нём будут звучать резко, с шипящими призвуками, а синусоида будет иметь повышенную крутизну спада-подъёма. Медленно открывавшийся на малых сигналах транзистор, затем резко открывается, искажая сигнал. Правильная траектория – линия 3. Видно, что относительно линии 3 (полупериод) образовалась синусоида (период), что означает призвуки с удвоенной частотой (гулкий звук). При улучшении режима В участок 2 превращается в яркостную точку, а затем исчезает. Далее, при исследовании нелинейных искажений, стало ясно, что искажения формы сигнала и увеличение коэффициента гармоник (т.4) происходят даже в режиме А с большими токами покоя, если противоположное плечо закрывается непропорционально сигналу (слишком резко), ускоряя тем самым прирост тока в нагрузке. Звук у такого УМ будет звонкий, с металлическим эхом, как при ударе по резиновому мячу. По этой причине некоторые усилители с высокими параметрами и большими токами покоя звучали хуже, и обладали худшей естественностью звучания, чем более простые в схемотехническом отношении усилители. В режиме А, если жёстко стабилизировать ток покоя (в данном случае 250 мА, штриховая линия) в точке 5 происходит резкий излом, что моментально сказывается на линейности характеристики открывающегося в этот момент нижнего плеча. Реакция ООС на этот прирост и нелинейность характеристик транзисторов создаёт всплески (осц.4). В зависимости от сигнала (например, при подаче на вход двух не кратных частот одновременно) они хаотично возникают на синусоиде, создавая звенящие призвуки. Значит, важен не столько ток покоя транзисторов, сколько их плавное (как можно ближе к форме полезного сигнала) открывание и закрывание. Это полностью подтверждает правоту источника [1], и позволяет применить в данном УМ экономичный режим А (ЭА) (Iо, линия 7 и 8 на рис.2). Этот режим ещё называют Super A, или Non switching (без переключения) [1], но название ЭА ближе к истине. Дело в том, что ЭА производит динамическое снижение токов покоя без ухудшения параметров (с улучшением качества звучания!), что уменьшает нагрев выходных транзисторов за счёт уменьшения сквозных токов, повышает экономичность и КПД усилителя по сравнению с режимом А, (но нагрев несколько больше режима АВ).

Что такое операционный усилитель - фото 49 - изображение 49

Принцип работы усилителя

Схема усилителя приведена на рис 3. Входной сигнал подаётся на неинвертирующий вход ОУ и усиливается до 8В. С выхода ОУ через R8 сигнал поступает на базы VT3, VT4. Так как эмиттеры VT3 и VT4 подключены к стабилизированному источнику напряжения, а питание ОУ тоже стабилизировано, то усиление VT3,VT4 зависит только от уровня сигнала, и мало зависит от напряжения питания. Фактически VT3(VT4) является управляемым генератором тока для VT5(VT6), а значит, влияние Uпит на усиление VT5 тоже будет ослаблено. А ток VT10 в свою очередь зависит от тока коллектора VT5. Это означает, что в усилителе отсутствует модуляция полезного сигнала питающим напряжением даже без ООС, и качество звучания, особенно на НЧ, будет такое же, как в усилителях со стабилизированным источником питания. Просадки будут заметны только при выходном напряжении близком к напряжению питания. В сочетании с нулевым выходным сопротивлением усилителя это заставляет очень качественно звучать любые АС. Транзисторы VT3 и VT5 (VT4 и VT6) составляют композитные каскады, в которые введён делитель, определяющий коэффициент усиления (он же одновременно и ООС). Такое удачное сочетание даёт возможность подать сигнал отрицательной обратной связи (ООС) непосредственно в цепь эмиттера VT3 (VT4) через R26(R27), сравнить его с опорным напряжением, и простым способом формировать работу выходных каскадов в режиме ЭА, получив высокую линейность при большой скорости нарастания и коэффициенте усиления. Одновременно напряжение ООС препятствует их резкому закрыванию. Даже при работе с отсечкой тока на максимальных уровнях сигнала (осц.6) выходные транзисторы заранее плавно открываются и не создают искажений на малых уровнях сигнала (область, наиболее благоприятная для возникновения гармоник). Форма минимального тока выходных транзисторов варианта 6 на максимальном сигнале соответствует осц.8, рис.2 с остаточным током 20 мА (снимок рис.4). Коэффициент усиления транзисторной части усилителя равен отношению R26/R17(R27/R18)+1. Коэффициент усиления всего усилителя равен отношению R5/R3+1. Чувствительность усилителя устанавливается подбором R3.

Виды и обозначения на схеме - фотография 50 - изображение 50

Рис.4. Форма тока VT10-VT11

Основные характеристики - изображение 51 - изображение 51

Устройство термокомпенсации варианта 6

После проведенных исследований тепловых режимов УМЗЧ автор пришёл к следующим выводам:1.Увеличение тока покоя выходных транзисторов в 2-3 раза может произойти даже при незначительном нагреве самого маломощного входного транзистора, поэтому желательно контролировать режимы как можно большего количества каскадов.2. Желательно каждый выходной транзистор размещать на отдельном радиаторе без изолирующих прокладок. Следует отметить, что ток покоя усилителя может значительно изменяться при прогреве транзисторов (особенно VT3-VT4) и изменении напряжения питания, при этом локальные колебания тока покоя в пределах +/- 20 мА не влияют на параметры усилителя. Устройство термокомпенсации работает следующим образом. Транзистор VT7 закреплён на радиаторе VT10 (или VT11) через слюдяную прокладку. При нагреве радиатора ток VT7 увеличивается, и он шунтирует опорное напряжение (смещение) подаваемое на эмиттеры VT3-VT4. При этом полностью исключена связь между эмиттерами т.к. по переменному току VT7 включен в обратной полярности, а переменная составляющая по питанию сглаживается конденсаторами С13-С14. Сюда же подаётся и сигнал ограничения тока выходных транзисторов (с VT8-VT9). Подбором резистора R25, в зависимости от размеров выходных радиаторов, выбираются тепловые режимы усилителя (графики рис.).

Где применяются - изображение 52 - изображение 52

В режиме 1, сплошная линия (при величине R25 = 30 Oм) ток покоя будет стабильным до 65–70 градусов, а затем будет уменьшаться до 0.

В режиме 2 (R25 = 24 Ом) ток покоя уменьшается пропорционально температуре, т.е. устройство выдерживает заданную температуру.

В режиме 3 (R25 = 36 Ом) ток покоя не будет расти с увеличением температуры, но и не будет снижаться для уменьшения нагрева транзисторов (устройство выдерживает заданный ток).

При умышленной переустановке выходных транзисторов на радиаторы меньшей площади устройство термокомпенсации перестраивало и выдерживало заданные тепловые режимы. В сочетании со слабой чувствительностью к просадкам питания это позволяет встроить этот УМ в уже имеющуюся аппаратуру, где недостаточно мощности силового трансформатора (например «Вега 50У-122С»), или площади радиаторов (музыкальный центр). Конечно же, можно собрать УЗЧ на микросхемах, но (по мнению автора) они не обладают таким же качеством звука, как УМ на дискретных элементах.

Параметры усилителя полностью зависят от типа применяемого ОУ. Максимально возможная синусоидальная выходная мощность усилителя 6 варианта — 120 Вт, но на нагрузке 4 Ом и напряжении питания выше +/-35В нужно ограничивать ток VT10, VT11 (R30, R31) или умощнять их, иначе рассеиваемая мощность на выходных транзисторах превысит предельно допустимую. При применении нагрузки только 4 Ом, напряжение питания не обязательно поднимать выше +/-35В. Правда при этом понизится выходная мощность на нагрузке 8 Ом. По мнению автора, АС с сопротивлением 6-8 Ом обладают большей естественностью звучания, а АС 4Ом – большей отдачей мощности и динамикой. АЧХ усилителя линейна от постоянного тока (без С1) до 200 кГц, с плавным уменьшением амплитуды от 200кГц до 1мГц (без С2, С5, С6). При подаче на вход усилителя сигнала частотой 1мГц с амплитудной модуляцией частотой 1кГц его принимал средневолновый приёмник. Постоянное напряжение подавалось на вход УМ (без С1) от 0 до 1В с шагом 10мВ, при этом выходное напряжение абсолютно линейно возрастало от 0 до 30В, т.е. усилитель вёл себя как прецизионный усилитель постоянного тока, что свидетельствует о его высокой линейности усиления и как следствие – низком коэффициенте гармоник и высокой верности звучания. Усилитель был испытан прямоугольными импульсами частотой 2 кГц на активной нагрузке 6 Ом. При этом была получена скорость нарастания выходного напряжения 30 В/мкс и была ограничена только источником прямоугольных импульсов, искажений формы сигнала и выбросов не замечено. На базе этой схемы можно сконструировать УМ с выходным напряжением 80-100 В. (Усилитель способен выдавать выходное напряжение, близкое к напряжению питания). Номинальное выходное напряжение = Uпит.-5 В. Максимальное выходное напряжение усилителя = Uпит.-3В. При уменьшении напряжения питания двуполярным регулируемым блоком питания амплитуда выходного сигнала не уменьшается до тех пор, пока питание не достигнет величины Uвых + 5В, и при Uпит = Uвых+3В наступает плавное ограничение выходного сигнала. Выходное сопротивление усилителя = 0. Усилитель не чувствителен к фону блока питания с переменной составляющей. Диапазон питающих напряжений — от +/- 15 до +/-40В. Измерения искажений производились с помощью двух генераторов Г3-118 и входящих в комплект режекторных фильтров. Уровень общих нелинейных искажений, при подаче на вход сигналов от 20 Гц до 20 кГц, был ниже, чем приведён в [1] (рис.8). Он находился на уровне наводок самого осциллографа С1-65А, (0,2…0,3мВ при выходном напряжении 32В), что предполагает коэффициент гармоник не более 0,002%. То же самое показали измерения с помощью спектр-анализатора компьютера. Но при этом главной целью было выполнение условия 2. При правильном выборе ОУ, подборе транзисторов по коэффициенту усиления и номиналов элементов для симметрии плеч, коэффициент гармоник составляет не более 0,0006% на 1 кГц, и 0,002% во всём диапазоне частот и мощностей. Усилитель испытывался и эксплуатировался при Iо = 120 мА с качественным радиатором.

Пятый вариант усилителя. (малогабаритный). Применение в оконечных каскадах составных транзисторов позволяет упростить схему и настройку усилителя, что важно для начинающих и малоопытных радиолюбителей. Значительное уменьшение его габаритов позволяет конкурировать по габаритам с УМЗЧ в интегральном исполнении, обладая при этом более высокими параметрами. Линейность усиления на НЧ больше, чем у микросхем УМЗЧ, больше выходное напряжение при равном напряжении питания, нечувствительность к просадкам питающего напряжения, что особенно важно для малогабаритных блоков питания. Схема двухканального варианта приведена на рис. ниже. В этом случае ОУ и стабилизаторы напряжения VT1-VT2 являются общими.

Классификация и принцип работы УНЧ - изображение 53 - изображение 53

Усилитель варианта 5 практически не требует налаживания. Всё сводится к проверке напряжений питания, отсутствия постоянного напряжения на выходе, и установке желаемого тока покоя при максимально нагретых выходных транзисторах. Дрейф тока покоя от температуры здесь меньше, чем в варианте 2 за счёт меньшего усиления по току, но за счёт большого усиления по напряжению составных транзисторов возможно чрезмерное усиление и ограничение сигнала, что вредно для АС, и может привести к выходу из строя транзисторов. Поэтому R19-R20 не следует делать меньше 0,075 Ом даже для мощных АС, а напряжение питания нежелательно увеличивать более +/-30 В. При желании можно добавить терморегулировку и защиту по току из варианта 6. Если возникают трудности с замером сопротивления 0,075 Ом, то можно выйти из положения двумя способами. 1). Соединить в параллель два резистора по 0,15 Ом или четыре по 0,3 Ом. 2). Замерить сопротивление константановой или нихромовой проволоки (например, разобрав проволочный резистор 0,51 Ом, 1%), выпрямить его, и точно разделить по длине на равные части, получив нужное сопротивление (необходимо прибавить длину подпайки). Концы отрезка желательно залудить на таблетке аспирина и протереть спиртом. Выпрямленный отрезок нихрома не будет иметь индуктивности, и может быть впаян в плату в виде перемычки или скобки. В места впайки желательно заклепать трубчатые заклёпки. Коэффициент гармоник усилителя 5 варианта составляет не более 0,008% во всем диапазоне частот и мощностей. Качество звучания зависит от ОУ и очень близко к варианту 6. Диапазон рабочих напряжений – от +/-6 до +/-30В, при этом понадобится только контроль тока покоя. В качестве примера на рисунках ниже приведена печатная плата двухканального варианта усилителя. В качестве выходных применены транзисторы TIP142T/TIP147T в корпусах ТО-220, с меньшими габаритами, чем TIP142/TIP147 в корпусах ТО-3Р. При встраивании в мультимедийные колонки, где есть вибрация, R13-R14 заменены одним постоянным 80…100к. В миниатюрном исполнении, на маленьких радиаторах, его следует подобрать такой величины, чтобы на холодных радиаторах ток покоя составлял 0…10мА, и при сильном прогреве никогда не поднимался выше 40…60 мА. Всё зависит от размера радиатора. Конденсатор С1- малогабаритный керамический, С3 – неполярный электролитический.

Детали и конструкция. В усилителе лучше всего применить ОУ со скоростью нарастания выходного напряжения не менее 50 В/мкс с низким уровнем гармоник и собственных шумов, с полевыми транзисторами на входе. Транзисторы VT3, VT4 следует подобрать с как можно большим коэффициентом усиления, малым уровнем шумов и слабой зависимостью тока коллектора от температуры. В качестве VT5-VT6 желательно применить транзисторы с высокой частотой усиления и малой ёмкостью коллектора. В усилителе вполне можно применить отечественные ОУ и транзисторы с целью переделки уже имеющегося усилителя из тех же деталей. При применении маломощных стабилитронов, R9-R10 следует увеличить до 4,3к. В зависимости от необходимого Uвых, необходимо изменить сопротивление R5, соблюдая условие: (R5/R3)+1=Uвых/Uвх. При применении других выходных транзисторов (полевых или при подключении в параллель) возможно придётся подобрать сопротивление R29-R30 по падению на них напряжения величиной 0,55В в среднем положении движка R24 при отключенных VT10-VT11. Комплементарные пары (VT3 – VT4, VT5 – VT6 и т.д.) противоположных плеч не должны отличаться по усилению более, чем на 5%. Симметрично расположенные резисторы верхнего и нижнего плеча тоже подбираются с допуском не более 5%. Это необходимое условие для симметрии выходного сигнала и избежания нелинейных искажений. Резисторы R30-R31 состоят из двух включенных в параллель резисторов по 0,2 Ом 2Вт каждый, расположенных друг над другом. R30, R31 обязательно следует применять безындукционные. Нельзя применять проволочные витые резисторы. Катушка L1 наматывается на резисторе R35, содержит 2 слоя провода ПЭЛ 0,8 и пропитана лаком или клеем. L1, C9, R36 монтируются на выходной плате. Площадь поверхности радиаторов VT5 – VT6 — 30 см, VT1 -VT2 -1.2 см. Малогабаритный вариант 6 усилителя можно смонтировать на плате размером 60х65 мм из фольгированного текстолита толщиной 1,5 мм. Цепи балансировки ОУ на ней отсутствуют, так как с качественным ОУ при наличии С3-С4 балансировка 0 на выходе усилителя происходит автоматически. При необходимости изменить размер платы, её можно перенести по сетке. На плате сохранена последовательность общей земляной шины сильноточных и слаботочных цепей, и при необходимости можно её разделить, удалив перемычки Х1 и Х2, а также перерезав дорожку в нужных точках. Все дорожки облужены припоем. Токоведущие дорожки цепей питания, и нагрузки облужены толстым слоем припоя с прокладкой одной жилы медного провода. Для всех транзисторов, закреплённых на радиаторах, обязательно применение теплопроводной пасты, а для транзисторов термодатчиков прокладки обязательно должны быть из слюды. В качестве С1 применён малогабаритный керамический конденсатор, а в качестве С3-С4 лучше всего применить неполярный электролитический конденсатор 22…47 мкФ.

Назначение, классификация, принцип действия, область применения полупроводниковых усилителей - изображение 54 - изображение 54

Плата усилителя варианта 6 (Вид со стороны компонентов, вид со стороны фольги)Размер 60х65 мм. Шаг сетки 2,5 мм. Размер 60х65 мм.

Принцип работы усилителя - фото 55 - изображение 55

Плата двухканального усилителя. Вариант 5. Размер 55х60мм.

Налаживание усилителя.

После проверки правильности монтажа следует:1. Установить R6 и R24 в среднее положение.2. Закоротить на корпус вход усилителя.3. Отпаять выходные транзисторы (VT11-VT12)4. Включить питание.5. Замерить напряжение питания и +/- 15 В.6. Установить (R6) на выходе усилителя напряжение 0В. Если на выходе УМ устанавливается 0В, а на выходе ОУ присутствует постоянное напряжение, то следует подобрать транзисторы по парам.7. Установить на R29-R30 напряжение 0,55 В с помощью R24. (В 5м варианте на R11-R12 = 1В).8. Отключить питание, подключить выходные транзисторы, включив в разрыв цепи коллектора VT10 амперметр на 1 А.9. Включить питание и R24 установить ток покоя коллектора VT10 в пределах 100 – 150 мА.10. Замерить ток покоя VT11, он не должен отличаться от тока VT10 более, чем на 5%.Ток покоя выходных транзисторов может быть установлен в пределах от 40 до 200 мА, в зависимости от желаемого качества звучания, режима работы, тепловых режимов, размеров радиаторов. Установку тока покоя нужно производить при температуре выходных транзисторов 35-40 градусов.11. Проконтролировать работу термокомпенсации, замерив токи покоя при максимальной температуре радиаторов выходных транзисторов.

Блок защиты АС

В аварийных ситуациях, при протекании постоянного тока через динамик, его катушка сгорает, поэтому обязательным условием для мощных усилителей является применение защиты АС. Блок защиты (рис. 11) работает следующим образом.

Принцип работы усилителя - фотография 56 - изображение 56

иапазон питающих напряжений: … +/-20…+/-60VВремя срабатывания:от постоянного напряжения +/- 1V … не более 0,5 сек.от постоянного напряжения +/- 30V … не более 0,1 сек.

При включении питания начинает заряжаться конденсатор С3 (от источника питания через R7- R8). Через 1 сек. напряжение на нём достигнет величины, достаточной для открывания VT3, затем открывается VT4, и реле своими контактами подключает АС к усилителю. При нормальной работе УМ переменное напряжение с его выхода не успевает зарядить С1-С2, а при аварийной ситуации постоянное напряжение с выхода усилителя откроет VT1 или VT2 (в зависимости от полярности), напряжение на С3 уменьшится и реле отключит АС. При ложных срабатываниях защиты на большой громкости следует увеличить ёмкость С1-C2. Желательно использовать для каждого канала отдельный блок защиты АС и подавать питание непосредственно с усилителя. При таком подключении, при сгорании одного из предохранителей, блок защиты никогда не подключит АС к усилителю. Питание реле (U P1) нужно осуществлять от источника, имеющего меньшую ёмкость фильтра питания, чем у самого усилителя, для того, чтобы при выключении питания реле Р1 отключалось первым. Реле следует применять с как можно большей площадью контактов и усилием пружин, т.к. у миниатюрных реле (особенно у герконовых) бывают случаи пригорания контактов и невозможность отключения в аварийной ситуации.

Усилитель эксплуатируется с февраля 2004 года, и показал исключительную естественность и качество звучания с АС “Корвет 150АС-001М”, Wharfedale — Pacific Evolution — 20 и “Вега 50АС-106, что и побудило предложить эту конструкцию вашему вниманию.

Принцип работы усилителя - изображение 57 - изображение 57

Для тестирования использовался CD “TRIANGLE electroacoustique laboratory”. www.triangle-fr.com.

Литература:[1] Ю.Митрофанов. ЭА в УМЗЧ. Радио №5,1986 г. Лайков А. В. г. Астрахань, 2010г.[2] Г. Брагин. УМЗЧ. Радио №12,1990 г. alexandr.laykov@rambler.ru

Автор: Лайков А. В (alexandr.laykov@rambler.ru)cxem.net/sound/amps/amp147.php

Операционный усилитель для чайников

Принцип работы усилителя - фото 58 - изображение 58

Приветствую вас дорогие друзья! Вот наконец добрался я  до своего компьютера,  приготовил себе чайку с печеньками  и понеслась…

Принцип работы усилителя - фотография 59 - изображение 59

Для тех кто впервые на моем блоге и не совсем понимает что здесь происходит спешу напомнить, меня зовут Владимир Васильев и на этих страницах я делюсь со своими читателями сакральными знаниями из области электроники и не только электроники. Так что может быть и вы здесь найдете  для себя что-то полезное, по крайней мере я на это надеюсь.  Обязательно подпишитесь, тогда вы ничего не пропустите.

А сегодня речь пойдет о таком электронном устройстве как операционный усилитель.  Эти усилители   применяются повсеместно, везде где требуется усилить сигнал по мощности найдется работенка для операционника.

Особенно распространено применение  операционных усилителей в аудиотехнике. Каждый аудиофилл стремится усилить звучание своих музыкальных колонок и поэтому старается прикрутить усилитель по мощнее. Вот здесь мы и сталкиваемся с операционными усилителями,  ведь многие аудиосистемы просто нашпигованы ими.  Благодаря  свойству операционного усилителя усиливать сигнал по мощности мы ощущаем более мощное давление на свои барабанные перепонки когда слушаем композиции на своих аудио колонках. Вот так вот в быту мы оцениваем  качество работы операционного усилителя  на слух.

В  этой статье на слух мы оценивать ничего не будем но постараемся рассмотреть все детально и  разложим все по полочкам чтобы стало понятно даже самому самоварному чайнику .

[contents]

Что такое операционный усилитель ?

Операционные усилители представляют собой микросхемы которые могут выглядеть по-разному.

Принцип работы усилителя - фотография 60 - изображение 60

Например на этой картинке изображены два операционных усилителя российского производства. Слева операционный усилитель К544УД2АР в  пластмассовом DIP корпусе а справа изображен операционник в металлическом  корпусе.

По началу, до знакомства с операционниками,     микросхемы в таких металлических корпусах я постоянно путал с транзисторами.  Думал что это такие хитромудрые  многоэмиттерные транзисторы ????

Условное графическое обозначение (УГО)

Условное обозначение операционного усилителя выглядит следующим образом.

Принцип работы усилителя - фото 61 - изображение 61

Итак  операционный усилитель (ОУ) имеет два входа и один выход. Также имеются выводы для подключения питания но на условных графических обозначениях их обычно не указывают.

Для такого усилителя есть два правила которые помогут понять принцип работы:

 

  1. Выход операционника стремится к тому, чтобы разность напряжений на его входах была равна нулю
  2. Входы операционного усилителя ток не потребляют

Вход 1  обозначается знаком «+»  и называется неинвертирующим а вход 2 обозначается как «-» и является инвертирующим.

Входы операционника обладают высоким входным сопротивлением или иначе говорят высоким импедансом.

Это говорит о том, что  входы операционного усилителя ток почти не потребляют (буквально какие-то наноамперы). Усилитель просто оценивает величину напряжений на входах и в зависимости от этого выдает сигнал на выходе усиливая его.

Коэффициент усиления операционного усилителя имеет просто огромное значение,  может достигать миллиона, а это очень большое значение!  Значит это то, что если мы ко входу приложим небольшое напряжение, хотябы 1 мВ, то на выходе  получим сразу максимум,  напряжение почти равное напряжению источника питания ОУ. Из-за этого свойства операционники практически никогда не используют без обратной связи (ОС). Действительно какой смысл во входном сигнале если на выходе мы всегда получим максимальное напряжение, но об этом поговорим чуть позже.

Входы ОУ работают так, что если величина на неинвертирующем входе окажется больше чем на инвертирующем, то на выходе будет  максимальное положительное значение +15В. Если на инвертирующем входе величина напряжения  окажется более положительной то  на выходе будем наблюдать максимум отрицательной величины, где-то -15В.

Действительно операционный усилитель может выдавать значения напряжений как положительной так и отрицательной полярности. У новичка может возникнуть вопрос о том как же такое возможно? Но такое действительно возможно и это связано с применением источника питания с расщепленным  напряжением, так называемым двуполярным питанием. Давайте рассмотрим питание операционника чуток подробнее.

Правильное питание ОУ

Наверное не будет секретом, что для того, чтобы операционник работал, его нужно запитать, т.е. подключить его к источнику питания. Но есть интересный момент, как мы убедились чуток ранее операционный усилитель может выдавать на выход напряжения как положительной так и отрицательной полярности. Как такое может быть?

А такое быть может! Это связано с применением двуполярного источника питания, конечно возможно использование и однополярного источника но в этом случае возможности операционного усилителя будут ограничены.

Вообще в работе с источниками питания многое зависит от того что мы взяли за точку отсчета т.е. за 0 (ноль). Давайте с этим разберемся.

Пример на батарейках

Принцип работы усилителя - изображение 62 - изображение 62

 Обычно примеры проще всего приводить на пальцах но  в электронике думаю подойдут и пальчиковые батарейки ????

Допустим у нас есть обычная пальчиковая батарейка (батарейка типа АА). У нее есть два полюса плюсовой и минусовой. Когда минусовой полюс мы принимаем за ноль, считаем нулевой точкой отсчета то соответственно плюсовой полюс батарейки будет у нас показывать + 5В (значение с плюсом).

Это мы можем увидеть с помощью мультиметра (кстати статья про мультиметры в помощь), достаточно подключить   минусовой черный щуп к минусу батарейки а красный щуп к плюсу и вуаля. Здесь все просто и логично.

Принцип работы усилителя - изображение 63 - изображение 63

Теперь немножко усложним задачу и возьмем точно такую же вторую батарейку. Подключим батарейки последовательно и  рассмотрим как меняются показания измерительных приборов (мультиметров или вольтметров) в зависимости от различных точек приложения щупов.

Если мы за ноль приняли минусовой полюс крайней батарейки  а измеряющий щуп подключим к плюсу батарейки то  мультиметр нам покажет значение в +10 В.

Если за точку отсчета будет принят положительный полюс батарейки а измеряющий щуп был подключен к минусу то любой вольтметр нам покажет -10 В.

Но если за точку отсчета будет принята точка между двумя батарейками то в результате мы сможем плучить простой источник двуполярного питания. И вы можете в этом убедиться, мультиметр нам подтвердит что так оно и есть. У нас в наличии   будет напряжение как положительной полярности +5В так и  напряжение отрицательной полярности -5В.

Схемы источников двуполярного питания

Примеры на батарейках я привел для примера, чтобы было более понятно. Теперь давайте рассмотрим несколько примеров  простых схем источников расщепленного питания которые можно применять в своих радиолюбительских конструкциях.

Схема с трансформатором,  с отводом от «средней» точки

Принцип работы усилителя - изображение 64 - изображение 64

И первая схема источника питания для ОУ перед вами. Она достаточно простая но я немножко поясню принцип ее работы.

Схема питается от привычной нам домашней  сети  поэтому нет ничего удивительного что на первичную обмотку трансформатора приходит переменный ток в 220В. Затем трансформатор преобразует переменный ток 220В в такой же переменный но уже в 30В. Вот такую  вот нам захотелось произвести трансформацию.

Да на вторичной обмотке будет переменное напряжение в 30В но обратите внимание на отвод от средней точки вторичной обмотки. На вторичной обмотке сделано ответвление, причем количество витков до этого ответвления равно числу витков после ответвления.

Благодаря этому ответвлению мы можем получить на выходе вторичной обмотки переменное напряжение как в 30 В так и переменку в 15В. Это знание мы берем на вооружение.

Далее нам нужно переменку выпрямить и превратить в постоянку поэтому диодный мост нам в помощь. Диодный мост с этой задачей справился и на выходе мы получили не очень стабильную постоянку в 30В. Это напряжение будет нам показывать мультиметр если  мы подключим шупы к выходу диодного моста, но нам нужно помнить про ответвление на вторичной обмотке.

Это ответвление мы ведем далее и подключаем между электролитическими конденсаторами и затем между следующией парой высокочастотных кондерчиков. Чего мы этим добились?

Мы добились нулевой точки отсчета между полюсами потенциалов положительной и отрицательной полярности. В результате на выходе мы имеем достаточно стабильное  напряжение как +15В так и -15В. Эту схему конечно можно еще более улучшить если добавить стабилитроны или интегральные стабилизаторы но тем не менее приведенная схема уже вполне может справиться с задачей питания операционных усилителей.

Схема с двумя диодными мостами

Принцип работы усилителя - фотография 65 - изображение 65

Эта схема на мой взгляд проще, проще в том ключе, что нет необходимости искать трансформатор с ответвлением от середины или формировать вторичную обмотку самостоятельно. Но здесь придется раскошелиться на второй диодный мост.

Диодные мосты включены так, что положительный потенциал формируется с катодов диодиков первого моста, а отрицательный потенциал выходит с анодов диодов второго моста.  Здесь нулевая точка отсчета выводится между  двумя мостами. Упомяну также, что здесь используются разделительные конденсаторы, они оберегают один диодный мост от воздействий со стороны второго.

Эта схема также легко подвергается различным улучшениям, но самое главное она решает основную задачу — с помощью нее можно запитать операционный усилитель.

Обратная связь ОУ

Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.

С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде ???? Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно  мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.

Если на дороге стало скользко ? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно.

В операционном усилителе все происходит подобным образом.

Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?

Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник  станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом  и как его контролировать, но для этого нам нужно знать некоторые детали.

Положительная обратная связь,  отрицательная обратная связь

Да, в  операционных усилителях применяют обратную связь и очень широко. Но обратная связь   может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.

Положительная обратная связь это когда часть выходного сигнала поступает обратно на вход причем она (часть выходного) суммируется с входным.

Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать.  Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.

С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые  используют в АЦП (Аналого-цифровых преобразователях).

Отрицательная обратная связь это такая связь когда часть выходного сигнала поступает обратно на вход но при этом она вычитается из входного

А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость.  В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.

При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.

Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.

Схемы включения операционных усилителей

Схемы включения операционных усилителей могут быть весьма разнообразны поэтому мне врятля удастся  рассказать о каждой но  я постараюсь рассмотреть основные.

Компаратор на ОУ

Принцип работы усилителя - фото 66 - изображение 66

Формулы для  компараторной схемы будут следующие:

Принцип работы усилителя - фотография 67 - изображение 67

Т.е. в результате будет напряжение соответствующее логической единице.

Принцип работы усилителя - фото 68 - изображение 68

Т.е. в результате будет напряжение соответствующее логическому нулю.

Схема компаратора обладает высоким входным сопротивлением (импедансом) и низким выходным.

Рассмотрим для начала вот такую схему включения  операционника  в режиме компаратора.  Эта схема включения лишена обратной связи.  Такие схемы применяются в цифровой схемотехнике когда нужно оценить сигналы на входе, выяснить какой больше  и выдать результат в цифровой форме. В итоге на выходе будет логическая 1 или логический ноль (к примеру 5В это 1 а 0В это ноль).

Допустим  напряжение стабилизации стабилитрона  5В,  на вход один мы приложили 3В а к входу 2 мы приложили 1В. Далее в компараторе происходит следующее, напряжение на прямом входе 1  используется как есть (просто потому что это неинвертирующий вход) а напряжение на инверсном входе 2 инвертируется. В результате где было 3В так и остается 3В а где был 1В будет -1В.

В результате 3В-1В =2В, но благодаря коэффициенту усиления операционника на выход пойдет напряжение равное напряжению источника питания, т.е. порядка 15В. Но стабилитрон отработает и на выход пойдет 5В что соответствует логической единице.

Теперь представили, что на вход 2 мы кинули 3В а на вход 1 приложили 1В. Операционник все это прожует, прямой вход оставит без изменений, а инверсный (инвертирующий)  изменит на противоположный  из 3В сделает -3В.

В результате 1В-3В=-2В, но согласно логике работы на выход пойдет минус источника питания т.е. -15В. Но у нас стоит стабилитрон и он это не пропустит и на выходе у нас будет величина близкая нулю. Это и будет логический ноль для цифровой схемы.

Триггер Шмитта на ОУ

Принцип работы усилителя - фотография 69 - изображение 69

Чуть ранее мы рассматривали такую схему включения ОУ как компаратор. В компараторе сравниваются два напряжения на входе и выдается результат на выходе. Но чтобы сравнивать входное напряжение с нулем нужно воспользоваться схемой представленной чуть выше.

Здесь сигнал подается на инвертирующий вход а прямой вход посажен на землю, на ноль.

Если на входе у нас напряжение больше нуля то на выходе будем иметь  -15В. Если напряжение меньше нуля то на выходе будет+15В.

Но что случится если мы захотим подать напряжение равное нулю? Такое напряжение никогда не получится сделать, ведь идеального нуля не бывает и сигнал на входе хоть на доли микровольт но обязательно будет меняться в ту или другую сторону.  В результате на выходе будут полный хаос, выходное напряжение будет многократно скакать  максимума до минимума что на практике совершенно не удобно.

Для избавления от подобного хаоса вводит гистерезист — это некий зазор в пределах которого сигнал на выходе не будет меняться.

Принцип работы усилителя - изображение 70 - изображение 70

Этот зазор позволяет реализовать данная схема посредством положительной обратной связи.

Представим, что на вход мы подали 5В , на выходе в первое мгновение получится сигнал напряжением в -15В. Далее начинает отрабатывать положительная обратная связь.  Обратная связь образует делитель напряжения в результате чего на прямом входе операционника появится напряжение -1,36В.

На инверсном входе у нас сигнал более положительный поэтому  операционный усилитель отработает следующим образом.  Внутри него сигнал в 5В инвертируется и становится -5В, далее два сигнала складываются и получается отрицательное значение. Отрицательное значение благодаря коэффициенту усиления станет -15В. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В.

Пусть сигнал на входе изменился и стал -2В. В нутрях это -2В инвертируется и станет +2В, а -1,36В как был так и останется. Далее все это складывается и получается положительное значение которое на выходе превратится в +15В.  На прямом входе значение -1,36В благодаря обратной связи превратится в +1,36В. Теперь чтобы изменить значение на выходе на противоположное нужно подать сигнал более 1,36В.

Таким образом у нас появилась зона с нулевой чувствительностью с диапазоном от -1,36В до +1,36В. Такая зона нечувствительности носит название гистерезис.

Повторитель

Принцип работы усилителя - изображение 71 - изображение 71

Принцип работы усилителя - фотография 72 - изображение 72

Наиболее простой обладатель отрицательной обратной связи это повторитель.

Повторитель выдает на выходе то напряжение, которое было подано на его вход. Казалось бы для чего  это нужно ведь от этого ничего не меняется. Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. В схемах повторители выступают в роли буфера, который оберегает от перегрузок хилые выходы.

Чтобы понять как он работает отмотаете чуток назад, там где мы обсуждали отрицательную обратную связь. Там я упоминал, что в случае с отрицательной обратной связью операционник всеми возможными способами стремится к равному потенциалу по своим входам.  Для этого он подстраивает напряжение на своем выходе так, чтобы разность потенциалов на его входах равнялась нулю.

Так допустим на входе у нас 1В. Чтобы потенциалы на входах были раны на инвертирующем входе должен быть также 1В. На то  он и повторитель.

Неинвертирующий усилитель

Принцип работы усилителя - изображение 73 - изображение 73

Принцип работы усилителя - фотография 74 - изображение 74

Схема неинвертирующего усилителя очень похожа на схему повторителя, только здесь обратная связь представлена делителем напряжения и посажена на землю.

Посмотрим как все это работает. Допустим на вход подано 5В, резистор R1 = 10Ом, резистор R2 = 10Ом. Чтобы напряжение на входах были равны, операционник вынужден поднять напряжение на выходе так, чтобы потенциал на инверсном входе сравнялся с прямым. В данном случае делитель напряжения делит пополам, получается, что напряжение на выходе должно быть  в два раза больше напряжения на входе.

Вообще чтобы применять эту схему включения даже не нужно  ничего ворошить в голове, достаточно воспользоваться формулой, где достаточно узнать коэффициент К.

Инвертирующий усилитель

Принцип работы усилителя - фото 75 - изображение 75

И сейчас мы рассмотрим работу такой схемы включения как инвертирующий усилитель.  Для инвертирующего усилителя  есть такие формулы:

Принцип работы усилителя - фото 76 - изображение 76

Инвертирующий усилитель позволяет усиливать сигнал одновременно инвертируя (меняя знак ) его . Причем коэффициент усиления мы можем задать любой. Этот коэффициент усиления мы формируем посредством отрицательной обратной связи, которая представляет собой делитель напряжения.

Теперь попробуем его в работе, допустим на входе у нас сигнал в 1В, резистор R2 = 100Ом, резистор R1 = 10Ом. Сигнал со входа идет через R1, затем R2  и на выход.  Допустим сигнал на выходе невероятным образом стал 0В. Рассчитаем делитель напряжения.

Принцип работы усилителя - изображение 77 - изображение 77

1В/110=Х/100, отсюда Х = 0,91В

Получается что в точке А потенциал равен 0,91В,  но это противоречит правилу операционного усилителя. Ведь операционник стремится уравнять потенциалы на своих входах. Поэтому потенциал в точке А будет равен нулю и равен потенциалу в точке B.

Как сделать так чтобы на входе был 1В а в точке А  был 0В?

Для этого нужно уменьшать напряжение на выходе.  И в результате мы получаем

Принцип работы усилителя - изображение 78 - изображение 78

 

К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.

Сумматор инвертирующий

Принцип работы усилителя - фотография 79 - изображение 79

 

А эта схема включения позволяет складывать множество входных напряжений. Причем напряжения могут быть как положительными так и отрицательными. По истине на операционниках можно строить аналоговые компьютеры. Так чтож давайте разбираться.

Основой сумматора служит все тот же инвертирующий усилитель только с одним отличием, вместо одного входа он может иметь этих входов сколько угодно. Вспомним формулку и инвертирующего усилка.

Принцип работы усилителя - фото 80 - изображение 80

Потенциал точки Х будет равен нулю поэтому сумма токов входящих с каждого входа будет выглядеть вот так:

Принцип работы усилителя - изображение 81 - изображение 81

Если нашей целью является чистое сложение входных напряжений то все резисторы в этой схеме выбираются одного номинала.  Это приводит также что коэффициент усиления для каждого входа будет равен 1. Тогда формула для инвертирующего усилителя принимает вид: 

Принцип работы усилителя - фотография 82 - изображение 82

Ну чтож, я думаю что с работой сумматора и других схем включения на операционниках разобраться не трудно. Достаточно немножко попрактиковаться и попробовать собрать эти схемы и посмотреть что происходит с входными и выходными сигналами.

А я на этом пожалуй остановлюсь ведь в работе с операционными усилителями применяются очень много различных схем включения, это различные преобразователи ток-напряжение,  сумматоры, интеграторы и логарифмирующие усилители и все их рассматривать можно очень долго.

Если вас заинтересовали другие схемы включения и хотите с ними разобраться то советую полистать книжку П.Хоровица и У.Хилла,  все обязательно встанет на свои места.

А на этом я буду завершать, тем более статья получилась достаточно объемной и  после написания ее нужно чутка подшлифовать и навести марафет.

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления тем больше я понимаю что  делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Кстати друзья, у меня возникла одна классная идея и мне очень важно слышать ваше мнение. Я подумываю выпустить обучающий материал   по операционным усилителям, этот материал будет в виде обычной pdf книжки или видеокурса, еще не решил. Мне кажется что несмотря на большое обилие информации в интернете и в литературе все=таки не хватает наглядной практической информации, такой, которую сможет понять каждый.

Так вот, напишите пожалуйста в комментариях какую информацию вы хотели бы видеть в этом обучающем материале чтобы я мог выдавать не просто полезную информацию а информацию которая действительно востребована.

А на этом у меня все, поэтому я желаю вам удачи, успехов и прекрасного настроения, даже не смотря на то что за окном зима!

С н/п Владимир Васильев.

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Ваш email:

Принцип работы усилителя - фотография 83 - изображение 83

Привет! Теория изложена довольно позитивно, благодаря человеческому языкухорошо бы добавить пару схемок — примеров, в смысле что то практическое,ходовое. С… Читать ещё

Привет!

Теория изложена довольно позитивно, благодаря человеческому языку хорошо бы добавить пару схемок — примеров, в смысле что то практическое, ходовое.

Скажем такое предложение — Копеечный сверхрегенерат АМ приемник со спаренным ОУ, типа таких

http://ru.aliexpress.com/item/433-MHZ-wireless-receiving-module/1359215010.html Где 1ый ОУ как усилитель, 2ой как компаратор кстати при буквально «отломе» ВЧ части получается ридер для магнитных карт (без каких либо доработок) только головку прицепить. Считай будет 3 примера в одном.

Очень бы хотелось узнать как это работает человеческо- аналоговым языком. А то >15 лет как программист, с цифровым RF работаю а, как работает не знаю и 99% коллег такие же )))

Заранее… ! ????

ali00ff

Автору нужно поупражняться с правилами Кирхгофа. Это к разговору о сумматорах. Три источника по 5 В включенных параллельно не дадут на выходе 15 В.

Валерий

а как тогда по вашему к входному напряжению плюсуется напряжение обратной связи ?

Валерий

Хорошая и поучительная статья, можно сказать «практическая» теория получилось, лично у меня отпали некоторые вопросы которые возникали при чтении другой литературы про ОУ. Спасибо!

Валерий2

Попробовал вашу схемку неинвертирующего усилителя в протеусе 8. Что то не сходится …на входе «+» выставляю +5В, резисторы R1 и R2 по 10 Ом. Запускаем схему — … Читать ещё

Попробовал вашу схемку неинвертирующего усилителя в протеусе 8. Что то не сходится … на входе «+» выставляю +5В, резисторы R1 и R2 по 10 Ом. Запускаем схему — на выходе ОУ +2,46 В. Что не так делаю?

Владимир

А если я в режиме компаратора ОУ запитаю однополярным током, то в случае, если напряжение на инверсном входе будет больше чем на прямом, я на выходе получу ноль вольт?

Руслан

Кстати, отличная статья, прежде читал на других сайтах мало было понятно, пока не пропал к вам. Спасибо!

Доброго времени суток Владимир!! Присоединяюсь к положительным отзывам коллег. Действительно оч хорошая статья, написана просто и доходчиво. Спасибо!!

Иван

Можно-ли привести пример усилителя при однополярном питании

А мне не понравилась статья. Я полный чайник и хотел разобраться, ан нет… нужны ещё какие-то знания или пояснения.Например про повторитель. ОУ там выступает … Читать ещё

А мне не понравилась статья. Я полный чайник и хотел разобраться, ан нет… нужны ещё какие-то знания или пояснения. Например про повторитель. ОУ там выступает как буфер. Т. е. он выдерживает высокие нагрузки, если защищает хилые цепи или уменьшает проходящий ток, или что-то ещё делает? Как-то не до конца раскрываются темы из-за этого не понятно.

Тимофей

По обратной связи в статье одно лишь словоблудие, которое никак не поясняет физику процесса в ОУ, что есть сигнал обратной связи и почему он приводит к стабилизации выходного напряжения.

Александр

Спасибо за комментарий)

Александр

самая доходчивая статья, через 20 минут решил проблему с усилением сигнала с дуги плазмы для управления компаратором… спасибо

Сергей Одесса

С батарейки AA не получится снять 5В.

молодец, хорошая статья

Показать ещё (19)

Классы усилителей сигнала и мощности

Принцип работы усилителя - изображение 84 - изображение 84

В данной статье мы подробно рассмотрим классификации усилителей: A, B, AB, C и от D до T. В конце статьи таблица классов усилителей по углу проводимости.

Классификация

Усилители классифицируются по классам в зависимости от их конструкции и эксплуатационных характеристик.

Не все усилители одинаковы, и существует четкое различие между настройкой и работой их выходных каскадов. Основными рабочими характеристиками идеального усилителя являются линейность, усиление сигнала, эффективность и выходная мощность, но в реальных усилителях всегда существует компромисс между этими различными характеристиками.

Как правило, большие усилители сигнала или мощности используются на выходных каскадах аудиоусилителей для управления нагрузкой громкоговорителя. Типичный громкоговоритель имеет импеданс от 4 Ом до 8 Ом, поэтому усилитель мощности должен быть способен подавать высокие пиковые токи, необходимые для возбуждения низкоомного динамика.

Один метод, используемый для различения электрических характеристик усилителей разных типов, относится к «классу», и в качестве таких усилителей классифицируются в соответствии с их схемотехнической конфигурацией и методом работы. Тогда Классы усилителей — это термин, используемый для различения разных типов усилителей.

Классы усилителя представляют величину выходного сигнала, которая изменяется в схеме усилителя в течение одного цикла работы при возбуждении синусоидальным входным сигналом. Классификация усилителей варьируется от полностью линейного режима (для использования при усилении сигнала высокой точности) с очень низкой эффективностью до полностью нелинейного (где точное воспроизведение сигнала не так важно), но с гораздо более высоким КПД, в то время как другие являются компромиссом между двумя.

Классы усилителей в основном объединены в две основные группы. Первыми являются классически управляемые усилители угла проводимости, формирующие более распространенные классы усилителей A, B, AB и C , которые определяются длиной их состояния проводимости на некоторой части выходного сигнала, так что работа транзистора выходного каскада лежит где-то между «полностью включен» и «полностью выключен».

Второй набор усилителей — это более новые так называемые «переключающие» классы усилителей D, E, F, G, S, T и т.д., Которые используют цифровые схемы и широтно-импульсную модуляцию (ШИМ) для постоянного переключения сигнала между «полностью ВКЛ.» и «полностью ВЫКЛ.», приводящие к сильному выходу в области насыщения и обрезания транзисторов.

Наиболее часто создаваемые классы усилителей — это классы, которые используются в качестве аудиоусилителей, в основном, классы A, B, AB и C, и, для простоты, именно эти типы классов усилителей мы рассмотрим здесь более подробно.

Усилитель класса А

Усилители класса А являются наиболее распространенным типом усилителей класса в основном благодаря их простой конструкции. Класс A буквально означает «лучший класс» усилителя, в основном из-за их низких уровней искажения сигнала и, вероятно, является лучшим звучанием из всех классов усилителей, упомянутых здесь. Усилитель класса А имеет самую высокую линейность по сравнению с другими классами усилителей и, как таковой, работает в линейной части кривой характеристик.

Обычно усилители класса A используют один и тот же транзистор (биполярный, полевой транзистор, IGBT и т.д.), подключенный в общей конфигурации эмиттера для обеих половин сигнала, причем транзистор всегда проходит через него, даже если у него нет базового сигнала. Это означает, что выходной каскад, будь то биполярное устройство, устройство MOSFET или IGBT, никогда не приводится полностью в свои области отсечки или насыщения, а вместо этого имеет базовую точку смещения Q в середине линии нагрузки. Тогда транзистор никогда не выключается, что является одним из его основных недостатков.

Принцип работы усилителя - изображение 85 - изображение 85

Для достижения высокой линейности и усиления выходного каскада усилителя класса A постоянно смещен в положение «ВКЛ» (проводящий). Затем для того, чтобы усилитель был классифицирован как «класс A», нулевой ток холостого хода на выходном каскаде должен быть равен или превышать максимальный ток нагрузки (обычно громкоговоритель), необходимый для получения наибольшего выходного сигнала.

Поскольку усилитель класса А работает в линейной части своих характеристических кривых, одно выходное устройство проходит через полные 360 градусов выходного сигнала. Тогда усилитель класса А эквивалентен источнику тока.

Поскольку усилитель класса A работает в линейной области, напряжение смещения постоянного тока (или затвора) базы транзисторов должно быть выбрано правильно, чтобы обеспечить правильную работу и низкий уровень искажений. Однако, поскольку выходное устройство постоянно включено, оно постоянно проводит ток, который представляет собой постоянную потерю мощности в усилителе.

Из-за этой постоянной потери мощности усилители класса A создают огромное количество тепла, добавляя к их очень низкому КПД около 30%, что делает их непрактичными для мощных усилителей. Кроме того, из-за высокого тока холостого хода усилителя, источник питания должен иметь соответствующие размеры и быть хорошо отфильтрованными, чтобы избежать любого гула и шума усилителя. Поэтому из-за низкой эффективности и проблем перегрева усилителей класса A были разработаны более эффективные классы усилителей.

Усилитель класса B

Усилители класса B были изобретены как решение проблем эффективности и нагрева, связанных с предыдущим усилителем класса A. Усилитель базового класса B использует два дополнительных транзистора, либо биполярные из полевых транзисторов, для каждой половины формы сигнала, а его выходной каскад сконфигурирован по схеме «двухтактный», так что каждое транзисторное устройство усиливает только половину выходного сигнала.

В усилителе класса B отсутствует базовый ток смещения постоянного тока, поскольку его ток покоя равен нулю, так что мощность постоянного тока мала, и, следовательно, его эффективность намного выше, чем у усилителя класса А. Однако цена, уплачиваемая за повышение эффективности, заключается в линейности коммутационного устройства.

Принцип работы усилителя - фотография 86 - изображение 86

Когда входной сигнал становится положительным, транзистор с положительным смещением проводит, а отрицательный транзистор выключен. Аналогично, когда входной сигнал становится отрицательным, положительный транзистор выключается, а отрицательный смещенный транзистор включается и проводит отрицательную часть сигнала. Таким образом, транзистор проводит только половину времени либо в положительном, либо в отрицательном полупериоде входного сигнала.

Затем мы можем видеть, что каждое транзисторное устройство усилителя класса B проводит только через половину или 180 градусов выходного сигнала в строгом временном чередовании, но поскольку выходной каскад имеет устройства для обеих половин сигнала, эти две половины объединяются вместе для получения полного линейного выходного сигнала.

Эта двухтактная конструкция усилителя, очевидно, более эффективна, чем класс A, примерно на 50%, но проблема с конструкцией усилителя класса B заключается в том, что она может создавать искажения в точке пересечения нуля сигнала из-за мертвой зоны транзисторов входных базовых напряжений от -0,7 В до +0,7.

Мы помним из учебника по транзисторам, что требуется напряжение базового эмиттера около 0,7 вольт, чтобы заставить биполярный транзистор начать проводку. Затем в усилителе класса B выходной транзистор не «смещен» до состояния «ВКЛ», пока не будет превышено это напряжение.

Это означает, что та часть сигнала, которая попадает в это окно 0,7 В, не будет воспроизводиться точно, что делает усилитель класса B непригодным для применения в прецизионных усилителях звука.

Чтобы преодолеть это искажение при пересечении нуля (также известное как перекрёстное искажение), были разработаны усилители класса AB.

Усилитель класса AB

Как следует из названия, усилитель класса AB представляет собой комбинацию усилителей типа «класс A» и «класс B», которые мы рассмотрели выше. Классификация усилителя AB в настоящее время является одним из наиболее распространенных типов конструкции усилителя мощности звука. Усилитель класса AB является разновидностью усилителя класса B, как описано выше, за исключением того, что обоим устройствам разрешено проводить в одно и то же время вокруг точки пересечения осциллограмм, что устраняет проблемы искажения кроссовера предыдущего усилителя класса B.

Два транзистора имеют очень небольшое напряжение смещения, обычно от 5 до 10% от тока покоя, чтобы сместить транзисторы чуть выше его точки отсечки. Тогда проводящее устройство, либо биполярное из полевого транзистора, будет включено в течение более одного полупериода, но намного меньше, чем один полный цикл входного сигнала. Следовательно, в конструкции усилителя класса AB каждый из двухтактных транзисторов проводит чуть больше, чем половину цикла проводимости в классе B, но намного меньше, чем полный цикл проводимости класса A.

Другими словами, угол проводимости усилителя класса AB находится где-то между 180 o и 360 o в зависимости от выбранной точки смещения.

Принцип работы усилителя - фотография 87 - изображение 87

Преимущество этого небольшого напряжения смещения, обеспечиваемого последовательными диодами или резисторами, состоит в том, что перекрестное искажение, создаваемое характеристиками усилителя класса B, преодолевается без неэффективности конструкции усилителя класса A. Таким образом, усилитель класса AB является хорошим компромиссом между классом A и классом B с точки зрения эффективности и линейности, при этом эффективность преобразования достигает примерно от 50% до 60%.

Усилитель класса C

Конструкция усилителя класса C обладает наибольшей эффективностью, но самой плохой линейностью среди классов усилителей, упомянутых здесь. Предыдущие классы A, B и AB считаются линейными усилителями, поскольку амплитуда и фаза выходных сигналов линейно связаны с амплитудой и фазой входных сигналов.

Однако усилитель класса C сильно смещен, так что выходной ток равен нулю в течение более половины цикла синусоидального входного сигнала, когда транзистор находится в режиме ожидания в точке его отключения. Другими словами, угол проводимости для транзистора значительно меньше 180 градусов и, как правило, составляет около 90 градусов.

Хотя эта форма смещения транзистора дает значительно улучшенную эффективность усилителя, составляющую примерно 80%, она вносит очень сильные искажения в выходной сигнал. Поэтому усилители класса C не подходят для использования в качестве усилителей звука.

Принцип работы усилителя - изображение 88 - изображение 88

Из-за сильного искажения звука усилители класса C обычно используются в высокочастотных синусоидальных генераторах и некоторых типах радиочастотных усилителей, где импульсы тока, генерируемые на выходе усилителей, могут быть преобразованы в синусоидальные волны определенной частоты использование LC резонансных цепей в его коллекторной цепи.

Другие распространенные классы усилителей

  • Усилитель класса D — это нелинейный импульсный усилитель или ШИМ-усилитель. Усилители класса D теоретически могут достигать 100% эффективности, так как в течение цикла не существует периода, когда формы напряжения и тока перекрываются, так как ток подается только через включенный транзистор.
  • Усилитель класса F повышают как эффективность, так и выходную мощность благодаря использованию гармонических резонаторов в выходной сети для преобразования формы выходного сигнала в прямоугольную волну. Усилители класса F способны обеспечить высокую эффективность более 90%, если используется бесконечная гармоническая настройка.
  • Усилитель класса G предлагает усовершенствования конструкции усилителя базового класса AB. Класс G использует несколько шин питания различных напряжений и автоматически переключается между этими линиями питания при изменении входного сигнала. Такое постоянное переключение снижает среднее энергопотребление и, следовательно, потери мощности, вызванные потерей тепла.
  • Усилитель класса I имеет два набора дополнительных выходных переключающих устройств, расположенных в параллельной двухтактной конфигурации, причем оба набора переключающих устройств дискретизируют один и тот же входной сигнал. Одно устройство переключает положительную половину сигнала, а другое переключает отрицательную половину, как усилитель класса B. При отсутствии входного сигнала или когда сигнал достигает точки пересечения нуля, переключающие устройства включаются и выключаются одновременно с рабочим циклом ШИМ 50%, что отменяет любые высокочастотные сигналы. Для получения положительной половины выходного сигнала выходной сигнал положительного переключающего устройства увеличивается в рабочем цикле, тогда как отрицательное переключающее устройство уменьшается на то же самое, и наоборот. Считается, что два токовых сигнала переключения чередуются на выходе, давая усилителю класса I имя: «чередующийся ШИМ-усилитель», работающий на частотах переключения более 250 кГц.
  • Усилитель класса S — это усилитель нелинейного режима переключения, аналогичный по своему действию усилителю класса D. Усилитель класса S преобразует аналоговые входные сигналы в цифровые прямоугольные импульсы с помощью дельта-сигма-модулятора и усиливает их, чтобы увеличить выходную мощность, прежде чем окончательно демодулировать с помощью полосового фильтра. Поскольку цифровой сигнал этого переключающего усилителя всегда либо полностью включен, либо выключен (теоретически нулевое рассеивание мощности), возможны коэффициенты полезного действия, достигающие 100%.
  • Усилитель класса T — это еще один тип цифрового усилителя с коммутацией. Усилители класса T в наши дни становятся все более популярными в качестве конструкции усилителя звука из-за наличия микросхем цифровой обработки сигналов (DSP) и многоканальных усилителей объемного звука, поскольку он преобразует аналоговые сигналы в сигналы с цифровой широтно-импульсной модуляцией (ШИМ) для усиление, увеличивающее эффективность усилителей. Конструкции усилителей класса T сочетают в себе уровни сигнала с низким уровнем искажений усилителя класса AB и коэффициент полезного действия усилителя класса D.

Мы видели здесь ряд классификаций усилителей, начиная от линейных усилителей мощности до нелинейных переключающих усилителей, и видели, как класс усилителей отличается вдоль линии нагрузки усилителей.

Краткое описание классов усилителей

Мы увидели, что рабочая точка постоянного тока Q усилителя определяет классификацию усилителя. Устанавливая положение точки Q наполовину на линии нагрузки кривой характеристик усилителей, усилитель будет работать как усилитель класса А. Перемещая Q вниз по линии нагрузки изменит усилитель в классе АВ, В или С.

Тогда класс работы усилителя относительно его рабочей точки постоянного тока может быть задан как:

Принцип работы усилителя - фото 89 - изображение 89

Мы рассмотрели здесь ряд классификаций усилителей, начиная от линейных усилителей мощности до нелинейных переключающих усилителей, и видели, как класс усилителей отличается вдоль линии нагрузки усилителей.

Таблица классов усилителей по углу проводимости

Усилители класса АВ, В и С могут быть определены в терминах угла проводимости θ следующим образом:

Классы усилителей Описание Угол проводимости
Класс А Полный цикл 360 o проводимости θ = 2π
Класс В Половина цикла 180 o проводимости θ = π
Класс AB Чуть более 180 o проводимости π <θ <2π
Класс С Чуть менее 180 o проводимости θ <π
От класса D до T ВКЛ-ВЫКЛ нелинейное переключение θ = 0

Автор: Тимеркаев Борис

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Принцип работы усилителя низкой частоты на транзисторах

Принцип работы усилителя - изображение 90 - изображение 90

Рассмотрим работу усилительного каскада, выполненного на транзисторе, включенного по схеме с общим эмиттером (рис. 5.1).

Принцип работы усилителя - фото 91 - изображение 91

рис. 5.1

При отсутствии входного сигнала

Принцип работы усилителя - изображение 92 - изображение 92

усилитель находится в режиме покоя и

Принцип работы усилителя - фото 93 - изображение 93

так же будет равно нулю. (этот режим называется статическим). При появлении сигнала

Принцип работы усилителя - фото 94 - изображение 94

усилитель будет работать в динамическом режиме, т.е. входной сигнал будет усиливаться.

В режиме покоя конденсаторы С1 и С2 отделяют вход усилителя и его выход от предыдущего и последующего каскадов. Если бы конденсаторов не было, то резисторы других каскадов были бы подключены параллельно к резисторам усилителя и поэтому режим усилителя по постоянному току был бы нарушен.

Режим постоянного тока необходим для выбора рабочей точки А (рис. 5.2) так, чтобы не было нелинейных искажений сигнала. При выборе рабочей точки пользуются входными и выходными характеристиками транзистора.

Рабочая область выходных характеристик ограничена линией NG-CD. При работе транзистора ток его коллектора не должен превышать максимально допустимый (

Принцип работы усилителя - фотография 95 - изображение 95

). Линия NG соответствует этому режиму.

Принцип работы усилителя - фотография 96 - изображение 96

рис. 5.2

Каждый транзистор способен рассеивать мощность на коллекторе не выше максимально допустимой (

Принцип работы усилителя - изображение 97 - изображение 97

). Линия GC ограничивает область допустимых мощностей рассеяния на коллекторе. Транзистор работает при некотором вполне определенном напряжении между коллектором и эмиттером. При превышении этого напряжения транзистор выходит из строя. Линия CD определяет область допустимых напряжений

Принцип работы усилителя - изображение 98 - изображение 98

.

Рабочую точку (А) на характеристиках следует выбирать так, чтобы она находилась на середине линейных участков входной и выходной характеристик, при этом нелинейные искажения будут минимальные. Рабочая точка характеризуется током коллектора

Принцип работы усилителя - фото 99 - изображение 99

и напряжения

Принцип работы усилителя - фотография 100 - изображение 100

.

Из схемы на рис. 5.1 можно определить

Принцип работы усилителя - фотография 101 - изображение 101

которое является уравнением динамической характеристики рассматриваемой схемы.

Динамическая характеристика в координатах

Принцип работы усилителя - изображение 102 - изображение 102

представляет уравнение прямой линии, не проходящей через начало координат.

Динамическую характеристику (линию нагрузки) легко построить, зная две точки. Определим точку пересечения нагрузочной линии с осью

Принцип работы усилителя - фотография 103 - изображение 103

. Для этого приравняем

Принцип работы усилителя - изображение 104 - изображение 104

, тогда

Принцип работы усилителя - фото 105 - изображение 105

(точка F).

Вторую точку пересечения прямой с осью

Принцип работы усилителя - изображение 106 - изображение 106

найдем из того, что при пересечении нагрузочной прямой с осью

Принцип работы усилителя - изображение 107 - изображение 107

напряжение

Принцип работы усилителя - изображение 108 - изображение 108

(точка К). Зная эти две точки, легко строим нагрузочную линию KF. Уравнение

Принцип работы усилителя - фотография 109 - изображение 109

позволяет определить по двум известным величинам третью. Например, по известным напряжению источника питания и положению рабочей точки легко определить сопротивление нагрузи

Принцип работы усилителя - фото 110 - изображение 110

.

Рабочим участком нагрузки будет линия AB, т.к. на ней изменения тока базы от точки А в обе стороны вызывают одинаковые изменения тока коллектора.

При неправильном выборе рабочей точки, т.е. если положительная и отрицательная амплитуды выходного сигнала неодинаковы, в усилителе возникают нелинейные искажения.

Если режим усилительного каскада выбран пра­вильно, то коэффициент нелинейных искажений не должен быть больше 5%.

Для создания режима покоя нужно в усилителе обеспечить определенный ток смещения (ток базы), при котором рабочая точка А находилась бы в середине нагрузочной прямой.

По входным характеристикам легко определить напряжение на базе транзистора. Для этого путем последовательного переноса точек выходной динами­ческой характеристики строится входная динамическая характеристика, по которой и определяются пределы изменения тока базы под воздействием входного сигнала и соответствующие им точки коллектора.

Для получения необходимого смещения пользуют­ся различными схемами.

Схема, приведенная на рис. 5.1, называется схемой фиксированным током базы

Принцип работы усилителя - фотография 111 - изображение 111

В этой схеме ток базы проходит через резистор

Принцип работы усилителя - фотография 112 - изображение 112

, который легко определить:

Принцип работы усилителя - фото 113 - изображение 113

Принцип работы усилителя - изображение 114 - изображение 114

В последнем выражении величиной

Принцип работы усилителя - изображение 115 - изображение 115

можно пренебречь, так как

Принцип работы усилителя - изображение 116 - изображение 116

»

Принцип работы усилителя - фотография 117 - изображение 117

. Резистор

Принцип работы усилителя - фото 118 - изображение 118

по­лучается очень большим (сотни тысяч Ом). При смене транзистора положение рабочей точки изменится из-за разброса параметров транзистора и из-за влияния температуры окружающей среды. Поэтому эта схема не получила широкого распространения.

Принцип работы усилителя - фото 119 - изображение 119

рис. 5.3а, б

Схема рис. 5.3а называется схемой с фиксированным напряжением смещения на базе. Напряжение смещения снимается с резистора, входящего в делитель напряжения

Принцип работы усилителя - фото 120 - изображение 120

,

Принцип работы усилителя - фото 121 - изображение 121

. Ток де­лителя выбирается достаточно большим, значительно больше тока базы в режиме покоя. Это необходимо для того, чтобы температурные изменения токов эмиттера и коллектора незначительно влияли на ток базы. Резисторы делителя опреде­ляются из формул:

Принцип работы усилителя - фото 122 - изображение 122

Принцип работы усилителя - изображение 123 - изображение 123

Принцип работы усилителя - фотография 124 - изображение 124

Схема рис. 5.3а менее экономична, чем схем. рис. 5.1, но стабильность режима работы ее повыше на. Из схемы рис. 5.9 видно, что ее резистор

Принцип работы усилителя - фотография 125 - изображение 125

подключен параллельно входному сопротивлению транзистора

Принцип работы усилителя - изображение 126 - изображение 126

. Источник питания всегда имеет малое внутреннее сопротивление, поэтому, пренебрегая им, можно считать, что резисторы К1 и 1\ включены между собой параллельно. Поэтому делитель

Принцип работы усилителя - изображение 127 - изображение 127

,

Принцип работы усилителя - фотография 128 - изображение 128

должен иметь большое сопротивление (несколько кОм) и обеспечивать выполнение условия:

Принцип работы усилителя - фотография 129 - изображение 129

»

Принцип работы усилителя - изображение 130 - изображение 130

Усилители постоянного тока: схемы, принцип действия, формулы

Принцип работы усилителя - фотография 131 - изображение 131

Усилитель называют усилителем постоянного тока (УПТ), если он может усиливать постоянные и медленно изменяющиеся сигналы. Такой усилитель может использоваться и для усиления переменных сигналов.

Выше рассмотрены операционные усилители, являющиеся усилителями постоянного тока. Но внутреннее устройство операционных усилителей не рассматривалось.

Для того чтобы постоянные или медленно изменяющиеся сигналы могли быть переданы с входа усилителя на его выход, должны использоваться только гальванические связи между отдельными частями усилителя или эти сигналы должны быть преобразованы в переменные.

Полученные переменные сигналы могут быть усилены с помощью усилителей переменного тока, в которых гальванические связи разорваны с помощью конденсаторов или трансформаторов.

После усиления переменные сигналы должны быть преобразованы в постоянные или медленно изменяющиеся.

При построении УПТ с использованием гальванической связи между каскадами получают УПТ, которому присуще такое вредное явление, как дрейф нуля. Под дрейфом нуля понимают самопроизвольное изменение выходного напряжения при неизменном нулевом входном. Основными причинами дрейфа нуля усилителя являются:

● изменение параметров элементов схемы, прежде всего транзисторов, за счет изменения температуры окружающей среды;

● изменение питающих напряжений;

● постоянное изменение параметров активных и пассивных элементов схемы, вызванное их старением.

Сигнал дрейфа нуля может быть соизмерим с полезным сигналом, поэтому при построении УПТ принимают меры по снижению дрейфа нуля.

Основными мерами снижения дрейфа являются:

● жесткая стабилизация источников питания усилителей;

● использование отрицательных обратных связей;

● применение балансных компенсационных схем УПТ;

● использование элементов с нелинейной зависимостью параметров от температуры для компенсации температурного дрейфа;

● применение УПТ с промежуточным преобразованием и др.

Важным вопросом при построении УПТ является также согласование потенциалов соседних каскадов, согласование источника входного сигнала с УПТ, а также подключение нагрузки к УПТ таким образом, чтобы при нулевом входном напряжении, напряжение на нагрузке было также равно нулю.

Поэтому простейшие УПТ, состоящие из нескольких каскадов, включенных последовательно и соединенных гальванической (непосредственной) связью, даже при условии согласования потенциалов обладают рядом недостатков, главным из которых является дрейф нуля.

Таким образом, для устранения отмеченных выше недостатков УПТ строят в виде параллельно-балансных каскадов, представляющих собой сбалансированный мост, в одно плечо которого включена нагрузка, а в другое — источник питания. Схема такого УПТ приведена на рис. 2.35.

Принцип работы усилителя - фото 132 - изображение 132

рис. 2.35 turion

Коллекторные сопротивления RK1 и RK2, транзисторы Т1 и Т2, резистор Rэ образуют мост, к одной диагонали которого подключен источник питания ЕK, а в другую диагональ — между коллекторами транзисторов — включается нагрузка.

При нулевых входных сигналах и полной симметрии схемы (RK1 = RК2, T1 и Т2 одинаковы) потенциалы коллекторов транзисторов Т1 и Т2 одинаковы и uвых, равное u К1—uК2, равно нулю.

Высокая стабильность схемы объясняется тем, что при изменении напряжения источника питания или при одинаковых изменениях параметров транзисторов (например, за счет температуры) потенциалы обоих коллекторов получают равные приращения и, следовательно, выходное напряжение остается равным нулю.

В реальных схемах всегда имеется некоторая несимметрия плеч и существует некоторый дрейф нуля, хотя он и значительно меньше, чем в других схемах.

Входной сигнал в этой схеме может подаваться либо между базами, либо на одну из баз при фиксированном потенциале другой.

Представив Rэ в виде двух параллельно соединенных сопротивлений удвоенной величины (см. пунктир на рис. 2.35), можно увидеть, что рассматриваемый УПТ представляет собой два каскада с эмиттерной стабилизацией, объединенных соответствующим образом (см. вертикальные разделительные линии). Включив последовательно с Rэ дополнительный источник Еэ, можно обеспечить такой начальный режим работы транзисторов, при котором потенциалы входов равны нулю и, следовательно, возможно убрать из схемы сопротивления делителей R1, R2, R3, R4. В результате получится схема дифференциального усилителя.

Что такое операционный усилитель?

Принцип работы усилителя - фотография 133 - изображение 133

В радиоэлектронике и микросхемотехнике широкое распространение получил операционный усилитель (ОУ). Он обладает отличными техническими характеристиками (ТХ) по усилению сигналов. Чтобы понять сферы применения ОУ, нужно узнать его принцип действия, схему подключения и основные ТХ.

Принцип работы усилителя - фото 134 - изображение 134

Что такое операционный усилитель

ОУ -- интегральная микросхема (ИМС), основным предназначением которой является усиление значения постоянного тока. Она имеет только один выход, который называется дифференциальным. Этот выход обладает высоким коэффициентом, усиливающим сигнал (Kу). ОУ в основном применяются при построении схем с отрицательной обратной связью (ООС), которая при основной ТХ по усилению и определяет Kу исходной схемы. ОУ применяются не только в виде отдельных ИМС, но и в разных блоках сложных устройств.

У ОУ 2 входа и 1 выход, а также есть выводы для подключения источника питания (ИП). Принцип действия операционного усилителя прост. Существует 2 правила, взятых за основу. Правила описывают простые процессы работы ИМС, происходящие в ОУ, и как работает ИМС, понятно даже чайникам. На выходе разность напряжений (U) равна 0, а входы ОУ почти не потребляют ток (I). Один вход называется неинвертирующим (V+), а другой является инвертирующим (V-). Кроме того, входы ОУ обладают высоким сопротивлением (R) и практически не потребляют I.

Чип сравнивает значения U на входах и выдает сигнал, предварительно усиливая его. Kу ОУ имеет высокое значение, достигающее 1000000. Если произойдет подача низкого U на вход, то на выходе возможно получить величину, равную U источника питания (Uип). Если U на входе V+ больше, чем на V-, то на выходе получится максимальное положительное значение. При запитывании положительным U инвертирующего входа на выходе будет максимальная величина отрицательного напряжения.

Принцип работы усилителя - изображение 135 - изображение 135

Основным требованием для работы ОУ является применение двухполярного ИП. Возможно применение однополярного ИП, но при этом возможности ОУ сильно ограничиваются. Если использовать батарейку и принять за 0 ее плюсовую сторону, то при измерении значений получится 1,5 В. Если взять 2 батарейки и соединить их последовательно, то произойдет сложение U, т.е. прибор покажет 3 В.

Если принять за ноль минусовой вывод батарейки, то прибор покажет 3 В. В другом случае, если принять за 0 плюсовой вывод, то получается -3 В. При использовании в качестве нуля точки между двумя батарейками получится примитивный двухполярный ИП. Проверить исправность ОУ можно только при подключении его в схему.

Виды и обозначения на схеме

С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.

Классификация по сферам применения:

  1. Индустриальные -- дешевый вариант.
  2. Презиционные (точная измерительная аппаратура).
  3. Электрометрические (малое значение Iвх).
  4. Микромощные (потребление малого I питания).
  5. Программируемые (токи задаются при помощи I внешнего).
  6. Мощные или сильноточные (отдача большего значения I потребителю).
  7. Низковольтные (работают при U<3 В).
  8. Высоковольтные (рассчитаны на высокие значения U).
  9. Быстродействующие (высокая скорость нарастания и частота усиления).
  10. С низким уровнем шума.
  11. Звуковой тип (низкий коэффициент гармоник).
  12. Для двухполярного и однополярного типа электрического питания.
  13. Разностные (способны измерять низкие U при высоких помехах). Применяются в шунтах.
  14. Усилительные каскады готового типа.
  15. Специализированные.

Принцип работы усилителя - фотография 136 - изображение 136

По входным сигналам ОУ делятся на 2 типа:

  1. С 2 входами.
  2. С 3 входами. 3 вход применяется для расширения функциональных возможностей. Обладает внутренней ООС.

Схема операционного усилителя достаточно сложная, и не имеет смысла его изготавливать, а радиолюбителю нужно только знать правильную схему включения операционного усилителя, но для этого следует понимать расшифровку его выводов.

Основные обозначения выводов ИМС:

  1. V+ -- неинвертирующий вход.
  2. V- -- инвертирующий вход.
  3. Vout -- выход.Vs+ (Vdd, Vcc, Vcc+) -- плюсовая клемма ИП.
  4. Vs- (Vss, Vee, Vcc-) -- минус ИП.

Практически в любом ОУ присутствуют 5 выводов. Однако в некоторых разновидностях может отсутствовать V-. Существуют модели, которые обладают дополнительными выводами, которые расширяют возможности ОУ.

Выводы для питания необязательно обозначать, т.к. это увеличивает читабельность схемы. Вывод питания от положительной клеммы или полюса ИП располагают вверху схемы.

Основные характеристики

ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:

  1. Усилительные.
  2. Входные.
  3. Выходные.
  4. Энергетические.
  5. Дрейфовые.
  6. Частотные.
  7. Быстродействие.

Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс). Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига -- разность Iсм для 2 входных полупроводников ОУ.

Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ. Uдифмакс -- U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.

Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R -- величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.

Принцип работы усилителя - фотография 137 - изображение 137

Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ -- разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).

В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:

  1. Скорость нарастания Uвых (СН Uвых).
  2. Время установления Uвых (реакция ОУ при скачке U).

Где применяются

Существует 2 вида схем ОУ, которые различаются способом подключения. Главный недостаток ОУ -- непостоянство Kу, зависящего от режима функционирования. Основные сферы применения -- усилители: инвертирующий (ИУ) и неинвертирующий (НИУ). В схеме НИУ Kу по U задается резисторами (сигнал нужно подавать на вход). ОУ содержит ООС последовательного типа. Эта связь выполнена на одном из резисторов. Она подается только на V-.

В ИУ происходит сдвиг сигналов по фазе. Для изменения знака выходного отрицательного напряжения необходима параллельная ОС по U. Вход, который является неинвертирующим, нужно заземлить. Входной сигнал через резистор подается на инвертирующий вход. Если неинвертирующий вход уходит на землю, то разность U между входами ОУ равна 0.

Можно выделить устройства, в которых применяются ОУ:

  1. Предусилители.
  2. Усилители звуковых и видеочастотных сигналов.
  3. Компараторы U.
  4. Дифусилители.
  5. Диференциаторы.
  6. Интеграторы.
  7. Фильтрующие элементы.
  8. Выпрямители (повышенная точность выходных параметров).
  9. Стабилизаторы U и I.
  10. Вычислители аналогового типа.
  11. АЦП (аналого-цифровые преобразователи).
  12. ЦАП (цифро-аналоговые преобразователи).
  13. Устройства для генерации различных сигналов.
  14. Компьютерная техника.

Операционные усилители и их применение получили широкое распространение в различной аппаратуре.

Классификация и принцип работы УНЧ

Принцип работы усилителя - фотография 138 - изображение 138

Курсовая работа

По курсу: «Ремонт и эксплуатация ЭВМ»

На тему: «Усилитель низких частот»

Выполнил Крутских С.А.

Учащийся 3 года обучения

Группа №34

Проверил: Лахин Н.А.

Воронеж 2013

Содержание

Усилитель низких частот(УНЧ).

Область применения УНЧ…………………….………………...…..4

Классификация и принцип работы УНЧ……..…………..……......7

Основные характеристики УНЧ…….………………..…….…......13

Практическая работа……………………………………………….16

Список литературы…………………………………………….…..24

Введение

Характерной особенностью современных электронных усилителей является

исключительное многообразие схем, по которым они могут быть построены.

Усилители различаются по характеру усиливаемых сигналов: усилители

гармонических сигналов, импульсные усилители и т. д. Также они различаются по

назначение, числу каскадов, роду электропитания и другим показателям.

Однако одним из наиболее существенных классификационных признаков является диапазон частот электрических сигналов, в пределах которого данный усилитель может удовлетворительно работать. По этому признаку различают следующие основные типы усилителей:

Усилители низкой частоты, предназначенные для усиления непрерывных

периодических сигналов, частотный диапазон которых лежит в пределах от

десятков герц до десятков килогерц. Характерной особенностью УНЧ является то,

что отношение верхней усиливаемой частоты к нижней велико и обычно составляет

не менее нескольких десятков.

Усилители постоянного тока – усиливающие электрические сигналы в диапазоне

частот от нуля до высшей рабочей частоты. Они позволяют усиливать как

переменные составляющие сигнала, так и его постоянную составляющую.

Избирательные усилители – усиливающие сигналы в очень узкой полосе частот.

Для них характерна небольшая величина отношения верхней частоты к нижней. Эти

усилители могут использоваться как на низких, так и на высоких частотах и

выступают в качестве своеобразных частотных фильтров, позволяющих выделить

заданный диапазон частот электрических колебаний. Узкая полоса частотного

диапазона во многих случаях обеспечивается применением в качестве нагрузки

таких усилителей колебательного контура. В связи с этим избирательные

усилители часто называют резонансными.

Широкополосные усилители, усиливающие очень широкую полосу частот. Эти

усилители предназначены для усиления сигналов в устройствах импульсной связи,

радиолокации и телевидения. Часто широкополосные усилители называют

видеоусилителями. Помимо своего основного назначения, эти усилители

используются в устройствах автоматики и вычислительной техники.

Область применения УНЧ

Усилитель осуществляет увеличение энергии управляющего сигнала за счет энергии вспомогательного источника. Входной сигнал является как бы шаблоном, в соответствии с которым регулируется поступление энергии от источника к потребителю усиленного сигнала.

Электронными называют усилители электрических сигналов с регулирующими элементами на полупроводниковых или электровакуумных приборах.

Прежде чем описывать специфику работы конкретных усилительных каскадов на транзисторах, следует получить четкое представление о том, каково основное предназначение данных каскадов. Ведь усиливаться могут различные показатели электрических сигналов и при различных ограничениях и условиях. Да и само понятие "усиление" иногда требует пояснения.

В общем, возможна классификация усилителей по очень большому количеству признаков, относящихся как к виду выполняемых ими функций, так и к качеству или способу выполнения этих функций. В дальнейшем мы будем придерживаться следующего разделения усилителей на группы.

  • усилители гармонических сигналов (при построении усилителей гармонических сигналов важнейшим является обеспечение минимального уровня вносимых в сигнал искажений);
  • усилители импульсных сигналов (усилители импульсных сигналов обычно используют различные ключевые режимы работы транзисторов, здесь важнейшим фактором является минимизация задержек фронтов и спадов усиливаемых сигналов, а также устранение паразитных выбросов токов и напряжений, неизбежно возникающих при прохождении таких сигналов через каскады усиления).
  • усилители постоянного тока (усилители, обладающие способностью усиливать весьма медленные колебания, в том числе и нулевой частоты, даже в том случае, если они в первую очередь предназначены для усиления мощности или напряжения переменных сигналов);
  • усилители переменного тока (прочие — не обладающие способностью усиливать сигналы нулевой частоты — усилители).
  • усилители низкой частоты
  • усилители высокой частоты (УВЧ); предназначены для усиления сигналов в радиочастотном диапазоне;
  • узкополосные усилители
  • широкополосные усилители (часто для уменьшения нелинейных искажений и повышения устойчивости усилителя выгодно реализовывать в нем максимально широкую полосу пропускания, гораздо шире, чем это реально необходимо для всех возможных частот рабочего сигнала);

Мощность и качество - это те, два основные параметра, характеризующие усилители низкой частоты, и, конечно, по которым мы привыкли сравнивать и оценивать их технические свойства, возможности и способности, радующие наш музыкальный слух. Немаловажную роль в работе усилителя мощности играет его составляющая - акустическая система. Чувствительность акустической системы - это величина, показывающая, какое звуковое давление в децибелах (дБ) на расстоянии в 1м будет создавать данная акустическая система при подведении к ней усилительной мощности в 1 Вт. И все же, усилители мощности подразделяются т на классы по типу обработки входного сигнала и схеме построения выходного каскада усилителя.Класс "А". Усилители этого класса обладают низкой эффективностью, но дают очень "чистый" сигнал на выходе, при минимальных нелинейных искажениях. Мощность не высокая, схема построения каскада не сложная. При умеренном питании, лишь часть подаваемой энергии уходит на усиление звука, а остальное выделяется в виде тепла. Предпочтенье отдается ламповой технике и конструкциям с несложными типовыми транзисторными и интегральными схемами.Класс "В". Эффективность усилителя этого класса почти в два раза выше эффективности усилителя класса "А". Но, к сожалению, искажения в выходном сигнале очень высоки, особенно при малом входном сигнале. Потребляемая мощность усилителя всецело зависит от его выходной мощности, термостабильность высокая.Класс "АВ". Большинство Hi-Fi усилителей принадлежат именно этому промежуточному классу. (Фото-7)Они вобрали в себя возможности усилителей класса А - относительно "чистый сигнал", без искажений, при относительно неплохой эффективности (немного ниже чем в классе В).Класс "С". Усилители этого класса имеют К.П.Д. равным почти 75%, что делает их очень эффективными, но с увеличением К.П.Д. резко увеличиваются искажения. Эти усилители не подходят для усиления звука в Hi-Fi аудиосистемах. Усилители класса "С" работают при напряжении смещения большем, чем напряжение запирания, и амплитудой сигнала не превышающем напряжения смещения.Класс "D". Принцип работы звукового усилителя класса Д схож с принципом работы импульсного блока питания. Он состоит в том, что выходной каскад усилителя возбуждается импульсами прямоугольной формы высокой частоты.) Поэтому усилитель, работающий в классе Д также часто называют импульсным или цифровым усилителем. Усилитель мощности класса Д обладает рядом преимуществ. Это, прежде всего малый вес и высокий КПД. За счёт того, что выходные транзисторы работают в режиме переключения (в импульсном ключевом режиме, мощность, рассеиваемая выходными транзисторами уменьшается на порядок, не требуя таких массивных радиаторов охлаждения. Мало того, при мощностях до 200Вт в канал, можно отказаться и от принудительного охлаждения вентиляторами выходных ключей-транзисторов.Соответственно, и мощность, потребляемая усилителем от сети, уменьшается, приближаясь к выходной мощности усилителя.

Принцип работы в общем случае - выбирается такой режим работы транзисторов выхода при котором данный сигнал проходит на выход без ограничения сигнала - выбор точки на ВАХ характеристике транзисторов выбирается уровнем смещения поданного на базу этого транзистора - которое должно быть не боле и не менее необходимого чтобы данный элемент работал именно в режиме усиления а не в ином режиме.

усиление идет за счет свойств полупроводника при определенных токах смещения создавать лавиноподобное увеличение тока на выходе транзистора - а чтоб было именно усиление, а не режим насыщения (ключевой) - добиваются расчетом тока в базовой цепи транзистора - открой справочник для техникума года 70-ого - там это все толково расписано (в отличие от более поздних - почему-то)

Назначение, классификация, принцип действия, область применения полупроводниковых усилителей

Принцип работы усилителя - изображение 139 - изображение 139

Наиболее распространенными аналоговыми электронными преобразователями являются усилители электрических сигналов. Они применяются для повышения уровня весьма слабых сигналов непосредственно с датчиков, обеспечения требуемой мощности для работы силовых исполнительных агрегатов и множества других приложений. На основе усилителей строится большинство функциональных аналоговых устройств, выполняющих преобразование сигналов (фильтрацию, изменение спектра, коррекцию формы), а также математические операции (суммирование, интегрирование, дифференцирование, нелинейную обработку).

Усилителем называют устройство, предназначенное для увеличения интенсивности сигнала без изменения его формы. Преобразование сигнала s(t) в идеальном усилителе описывается соотношением sу (t) = K s(t – tз),где K – коэффициент преобразования, tз – интервал времени задержки. Сигнальная модель усилителя представляет собой четырехполюсник с выделенными парами входных и выходных зажимов.

Для обеспечения функции усиления без искажений четырехполюсник должен быть линейным элементов с параметрами, не зависящими от формы сигнала и его уровня при заданных внешних условиях. Реальные полупроводниковые элементы электронных устройств являются нелинейными и обладают инерционными свойствами, что приводит к искажению сигналов при их преобразовании. Для описания изменения формы и спектра сигналов служат характеристики усилителя. Нелинейные искажения можно рассчитать с помощью статических входной Uвх(Iвх), выходной Uвых(Iвых) и проходной Uвых(Uвх) характеристик. Динамические свойства усилителей характеризуют зависимостью комплексного коэффициента передачи от частоты, а также переходной или импульсной функциями во временной области. Наибольшее распространение в усилительной технике получили амплитудно-частотная и переходная характеристики.

Принцип работы усилителя - изображение 140 - изображение 140

Классы электронных усилителей и режимы работы активных усилительных приборов (ламп или транзисторов) традиционно обозначаются буквами латинского алфавита. Буквенные обозначения классов усиления могут дополнительно уточняться суффиксом, указывающим на режим согласования мощного каскада с источником сигнала (AB1, AB2 и т. п.) и с нагрузкой (F1, F2, F3). Устройства, совмещающие свойства двух «однобуквенных» классов, могут выделяться в особые классы, обозначаемые сочетанием двух букв (AB, BD, DE и устаревший BC).

Первая буквенная классификация, действующая по сей день (режимы А, B и С), сформировалась в 1920-е годы и была дополнена режимом, или классом, D в 1955 году. Начавшийся в 1960-е годы выпуск высокочастотных силовых транзисторов сделал возможным построение экономичных транзисторных усилителей радиочастот классов E и F. Последовательное усовершенствование транзисторных усилителей мощности звуковых частот класса B привело к разработке усилителей классов G и H. Единого реестра классов усиления не существует, поэтому в разных областях электроники или на разных рынках одна и та же буква (например, S) может обозначать принципиально разные устройства. Схемы, известные в Европе и Японии как класс G, в США относятся к классу H, и наоборот[1]. Буква, широко используемая в одной области электроники (класс F с его производными F1, F2, F3 и т. д.), в другой области может считаться «свободной»[2]. Кроме того, есть «классы усилителей» — торговые марки компаний-производителей и стоящие за ними частные технические решения. Одни из них, например, конструктивно схожие усилители звуковых частот «класса S» и «класса АА», подробно описаны в литературе, другие известны только по рекламе производителей.

Признаки классификации:

 Характер входного сигнала.

 Назначение.

 Режим работы нелинейного активного элемента.

 Тип активного элемента.

 Полоса усиливаемых частот.

По характеру усиливаемых сигналов различают:

 Усилители непрерывных сигналов. Здесь пренебрегают процессами установления. Основная характеристика – частотная передаточная.

 Усилители импульсных сигналов. Входной сигнал изменяется настолько быстро, что переходные процессы в усилителе являются определяющими при нахождении формы сигнала на выходе. Основной характеристикой является импульсная передаточная характеристика усилителя.

По назначению усилителя делятся на:

 усилители напряжения,

 усилители тока,

 усилители мощности.

Все они усиливают мощность входного сигнала. Однако собственно усилители мощности должны и способны отдать в нагрузку заданную мощность при высоком коэффициенте полезного действия.

 С точки зрения выбора режима работы активного элемента различают:

 Режим слабого сигнала. Нелинейный активный элемент работает в квазилинейном режиме. Применяется в усилителях напряжения или тока.

 Режим большого сигнала. Применяется в усилителях мощности.

По типу используемых активных элементов усилители делятся на ламповые; транзисторные; диодные; параметрические; СВЧ-усилители, работающие с помощью специальных СВЧ-приборов и др.

 В зависимости от вида частотной передаточной характеристики усилителя и абсолютным значениям полосы частот различают:

 Усилители постоянного тока (УПТ). Такое название обусловлено тем, что они способны усиливать очень медленные изменения сигналов (в том числе постоянные) , т.е. рабочая полоса частот начинается от нулевой частоты до некоторой верхней граничной частоты. Величина верхней граничной частоты fв зависит от вида усиливаемых сигналов. Так, если УПТ используется в канале изображения телевизионной системы, то fв составляет 6 - 6,5 МГц , т.е. УПТ это, как правило, широкополосный усилитель.

 Усилители низкой частоты (усилители звуковой частоты). Название условное, оно подчеркивает, что нижняя граничная частота лежит в области низких частот, несоизмеримо ниже верхней граничной частоты. Само значение верхней граничной частоты может быть разным: от единиц-десятков КГц до сотен МГц.

Применение полупроводниковых усилителей имеет ряд особенностей, связанных с выбором нагрузки. Полупроводниковые триоды допускают некоторое превышение номинальных значений токов в цепях электродов, но не допускают даже кратковременных превышений напряжений между электродами; это приводит к пробою и выходу их из строя. Поэтому напряжение питания выходных цепей триодов ограничено допустимым напряжением между электродами в цепи нагрузки. Напряжение питания выходной цепи и требуемая величина выходной мощности определяют максимально возможное сопротивление нагрузки, включенной непосредственно в выходную цепь усилителя. Когда нагрузка не отвечает этому требованию, применяют согласующий выходной трансформатор.

 Применение полупроводникового усилителя позволяет уменьшить запаздывание защиты до 50 - 60 мсек.

 Применение полупроводниковых усилителей в САР отопления и вентиляции может быть весьма перспективно, если правильно выявить их преимущества и недостатки. В целом ряде случаев появляется возможность полностью использовать их преимущества и нейтрализовать воздействие присущих им недостатков на работу САР. Для этого необходимо учитывать особенности работы полупроводниковых усилителей.

 Применение электронных, электромагнитных и полупроводниковых усилителей делает возможным создание гибких, разнообразных устройств, формирующих различные законы регулирования.

 Необходимое увеличение жесткости механических характеристик достигается применением промежуточного полупроводникового усилителя в схеме обратной связи.

 В связи с этим определяются и области применения полупроводниковых усилителей, коренным образом отличающихся от электронных усилителей. Так, полупроводниковый усилитель может заменить электромашинный или магнитный усилитель для управления электродвигателем мощностью в несколько сот ватт и даже в несколько киловатт. При этом небольшой по габаритам усилитель отличается высоким быстродействием, так как практически не вносит никакого запаздывания.

 Необходимо указать также и на общее совершенствование аппаратуры, применение полупроводниковых усилителей, осциллографов с непосредственной записью, автоматических анализаторов спектра вибрации, телеметрических устройств ( например, для регистрации на земле вибрации летящей ракеты) и пр.

44. Классификация измерительных приборов и систем, их обозначение.

Принцип работы усилителя - изображение 141 - изображение 141

По техническому назначению:

мера физической величины - cредство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью;

измерительный прибор - средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне;

измерительный преобразователь - техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи;

измерительная установка (измерительная машина) - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте;

измерительная система - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях;

измерительно-вычислительный комплекс - функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По степени автоматизации:

автоматические;

автоматизированные;

ручные.

По стандартизации средств измерений:

стандартизированные;

нестандартизированные.

По положению в поверочной схеме:

эталоны;

рабочие средства измерений.

По значимости измеряемой физической величины:

основные средства измерений той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;

вспомогательные средства измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 193)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты