Цап принцип работы

Цифроаналоговые преобразователи (ЦАП), принцип работы, типы

Цифроаналоговые преобразователи (ЦАП), принцип работы, типы - фотография 1 - изображение 1

Цифроаналоговые преобразователи (ЦАП) — предназначены для преобразования цифровых сигналов в аналоговые. Такое преобразование необходимо, например, при восстановлении аналогового сигнала, предварительно преобразованного в цифровой для передачи на большое расстояние или хранения (таким сигналом, в частности, может быть звук). Другой пример использования такого преобразования — получение управляющего сигнала при цифровом управлении устройствами, режим работы которых определяется непосредственно аналоговым сигналом (что, в частности, имеет место при управлении двигателями).

{xtypo_quote}К основным параметрам ЦАП относят разрешающую способность, время установления, погрешность нелинейности и др.{/xtypo_quote}

Разрешающая способность — величина, обратная максимальному числу шагов квантования выходного аналогового сигнала. Время установления tуст — интервал времени от подачи кода на вход до момента, когда выход­ной сигнал войдет в заданные пределы, определяемые погрешностью. Погрешность нелинейности — максимальное отклонение графика зависимости выходного напряжения от напряжения, задаваемого цифровым сигналом, по отношению к идеальной прямой во всем диапазоне преобразования.

Как и рассматриваемые аналого-цифровые преобразователи (АЦП), ЦАП являются «связующим звеном» между аналоговой и цифровой электроникой. Существуют различные принципы построения АЦП.

Схема ЦАП с суммированием весовых токов

На рис. 3.88 приведена схема ЦАП с суммированием весовых токов.

Схема ЦАП с суммированием весовых токов - фото 2 - изображение 2

рис. 3.88 turion

Ключ S5 замкнут только тогда, когда разомкнуты все ключи S1…S4 (при этом uвых= 0). U0

— опорное напряжение. Каждый резистор во входной цепи соответствует определенному разряду двоичного числа.

По существу этот ЦАП — инвертирующий усилитель на основе операционного усилителя. Анализ такой схемы не представляет затруднений. Так, если замкнут один ключ

S1, то uвых= −U0Roc/ R

что соответствует в первом и нулям в остальных разрядах.

Из анализа схемы следует, что модуль выходного напряжения пропорционален числу, двоичный код которого определяется состоянием ключей S1…S4. Токи ключей S1…S4 суммируются в точке «а», причем токи различных ключей различны (имеют разный «вес»). Это и определяет название схемы.

Из вышеизложенного следует, что uвых= − ( U0Roc / R ) · S1 − ( U0Roc / (R/2) ) · S2 – − ( U0Roc / (R/4) ) · S3 − ( U0Roc / (R/8) ) · S4 = = − ( U0Roc / R ) · ( 8S4 + 4S3 + 2S2 + S1)

где Si ,i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

Состояние ключей определяется входным преобразуемым кодом. Схема проста, но имеет недостатки: значительные изменения напряжения на ключах и использование резисторов с сильно отличающимися сопротивлениями. Требуемую точность этих сопротивлений обеспечить затруднительно.

ЦАП на основе резистивной матрицы R — 2R

 

Рассмотрим ЦАП на основе резистивной матрицы R — 2R(матрицы постоянного сопротивления) (рис. 3.89).

ЦАП на основе резистивной матрицы R — 2R - фото 3 - изображение 3

рис. 3.89 turion

В схеме использованы так называемые перекидные ключи S1…S4, каждый из которых в одном из состояний подключен к общей точке, поэтому напряжения на ключах невелики. Ключ S5 замкнут только тогда, когда все ключи S1…S4 подключены к общей точке. Во входной цепи использованы резисторы всего с двумя различными значениями сопротивлений.

Из анализа схемы можно увидеть, что и для нее модуль выходного напряжения пропорционален числу, двоичный код которого определяется состоянием ключей S1…S4. Анализ легко выполнить, учитывая следующее. Пусть каждый из ключей S1…S4 подключен к общей точке. Тогда, как легко заметить, напряжение относительно общей точки в каждой следующей из точек «a»…«d» в 2 раза больше, чем в предыдущей. К примеру, напряжение в точке «b» в 2 раза больше, чем в точке «а» (напряжения Uа, Ub, Uc и Ud в указанных точках определяются следующим образом:

Ua = U0

Uc = U0 / 2

Ub = U0 / 4

Ud = U0 / 8

Допустим, что состояние указанных ключей изменилось. Тогда напряжения в точках «a»…«d» не изменятся, так как напряжение между входами операционного усилителя практически нулевое.

Из вышеизложенного следует, что:

uвых= − ( U0Roc / 2R ) · S4 − ( (U0/2) Roc / 2R ) · S3 –  ( (U0/4) Roc / 2R ) · S2 − ( (U0/8) Roc / 2R ) · S1 =  − ( U0Roc/ 16R) · ( 8S4+ 4S3+ 2S2 + S1)

где Si , i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

ЦАП для преобразования двоично-десятичных чисел

Рассмотрим ЦАП для преобразования двоично-десятичных чисел (рис. 3.90).

ЦАП для преобразования двоично-десятичных чисел - изображение 4 - изображение 4

рис. 3.90 turion

Для представления каждого разряда десятичного числа используется отдельная матрица R − 2R (обозначены прямоугольниками). Z0…Z3 обозначают числа, определенные состоянием ключей каждой матрицы R − 2R. Принцип действия становится понятным, если учесть, что сопротивление каждой матрицы R, и если выполнить анализ фрагмента схемы, представленного на рис. 3.91.

Параметры некоторых ЦАП - изображение 5 - изображение 5

рис. 3.91 turion

Из анализа следует, что

U2 = U1 · [ ( R||9R) / (8,1R + R||9R) ]

R||9R = (R · 9R) / (R + 9R) = 0,9R

Следовательно, U2 = 0,1 U1. С учетом этого получим

uвых= − ( U0Roc / 16R ) · 10−3 ( 103 · Z3 + 102 · Z2 + 10 · Z1 + Z0)

Наиболее распространенными являются ЦАП серий микросхем 572, 594, 1108, 1118 и др. В табл. 3.2 приведены…

 

Параметры некоторых ЦАП

Цифро-аналоговые преобразователи (ЦАП) - фотография 6 - изображение 6

табл. 3.1 turion

Цифро-аналоговые преобразователи (ЦАП)

Урок 14: Аналого-цифровые и цифро-аналоговые преобразователи. Принципы работы АЦП и ЦАП - фотография 7 - изображение 7

Цифро-аналоговый преобразователь предназначен для преобразования

входной величины, представленной числовым кодом, в эквивалентную аналоговую величину. В ЦАП в качестве входного сигнала используются цифровые коды, а выходным сигналом является, как правило, напряжение.

Принцип работы ЦАП состоит в суммировании эталонных значений

напряжений (токов), соответствующих разрядам входного кода, причем в суммировании участвуют только те эталоны, для которых в соответствующих разрядах стоит "1". В этом случае входное напряжение определяется

следующим образом:

ЦАП — что за штука и что он преобразует?? - фото 8 - изображение 8

где U0 — опорное (эталонное) напряжение,

k — коэффициенты двоичных разрядов, принимающие значение 0 или 1,

n — разрядность входного кода.

Основные характеристики ЦАП подразделяются на статические и

динамические. К статическим параметрам относятся:

— разрядность (n),

— абсолютная разрешающая способность ЦАП - т.е. минимальное значением изменения сигнала на выходе, обусловленное изменением входного кода на единицу (цена младшего разряда), определяется как U0/2n,

— абсолютная погрешность преобразования в конечной точке шкалы δшк представляет собой отклонение значения выходной напряженности от номинального расчетного, соответствующего конечной точке характеристики преобразованния (измеряется в единицах младшего разряда (EMP) или в процентах (рис. 13.1),

— нелинейность преобразования δL -это отклонение реальной характеристики преобразования от расчетной (линейной). Величина δL измеряется в

единицах младшего разряда или в процентах:

 Секрет качественного звучания - фотография 9 - изображение 9

Из динамических характеристик наиболее существенными являются:

— время установления выходного сигнала tуст, - это интервал времени от подачи входного кода до появления выходного напряжения,

— максимальная частота преобразования fпреобр.

Разновидности аудио ЦАПов - фото 10 - изображение 10

Рис.13.1. Характеристики преобразования ЦАП Реальная(а) и идеальная(б).

При построении ЦАП в качестве эталонов используются токи или напряжения. Принцип построения ЦАП, реализующих метод суммирования

токов, иллюстрируются на рис.13.2.

Как получить полный кайф от звучания? - фото 11 - изображение 11

Рис.13.2. С ЦАП с суммированием токов (а) и ее реализация (б)

Данное устройство (рис. 13.2а) содержит n источников тока, которые подключаются с помощью ключей S к общей нагрузке Rн. На общей нагрузке

Rн будут протекать только токи тех разрядов, в которых значение цифры-

единица. Если нагрузка Rн постоянна, то выходное напряжение Uвых пропорционально входному коду. На практике для получения выходного напряжения, пропорционального входному коду, в качестве нагрузки используется операционный усилитель (ОУ), играющий роль преобразователя тока в напряжение. Действительно в ОУ напряжение между входами равно нулю.

Цифро – аналоговый преобразователь - изображение 12 - изображение 12

Выходное напряжение в ОУ прямо пропорционально выходному току

ЦАП и не зависит от сопротивления выходной нагрузки.

Недостатком рассмотренной выше схемы ЦАП является широкий диапазон величин сопротивлений в резистивной матрице для формирования разрядных токов. К тому же эти резисторы должны иметь высокую точность изготовления. Поэтому в современных ЦАП используются резистивные матрицы типа R-2R. Эти матрицы включают в себя резисторы двух номиналов R и 2R (рис.13.3).

Схема ЦАП. Цифро-аналоговые преобразователи: типы, классификация, принцип работы, назначение - фото 13 - изображение 13

Рис.13.3. ЦАП с матрицей R-2R

В резистивной матрице происходит последовательное деление тока на

два. В результате выходное максимальное напряжение на выходе ЦАП при N=111...1 равно:

Приложения - изображение 14 - изображение 14

Входное сопротивление резистивной матрицы, а следовательно, и ток J0 постоянны и не зависят от состояния ключей (кода). При Rooc=R величина

выходного напряжения Uвых макс меньше Uоп на величину младшего разряда.

Точность и стабильность параметров ЦАП, в основном, зависят от стабильности источника Uоп и точности изготовления резисторов R в матрице.

ЦАП выпускаются в виде ИС, обычно с внешним источником Uоп и ОУ. На рис 13.4 изображены ИС ЦАП серии К572. Микросхема К572ПА1 представляет собой резистивную матрицу на 10 разрядов и токовые ключи. Входы ОУ подключаются к выходным шинам J1, J2, а выход ОУ к входу Y. Сопротивление обратной связи Rooc=R находится внутри кристалла, что увеличивает стабильность работы ЦАП. Микросхема К572ПА2 имеет разрядность –12 и содержит два дополнительных двенадцатиразрядных регистров для хранения входной информации. Прием в регистры производится подачей сигнала 1 на входы С1 и С2. Существуют другие серии ИС с повышенным быстродействием, например К1108ПА1, К1118ПА1 и др.

Обзор - фото 15 - изображение 15

Рис 13.4. ИС ЦАП серии К572ПА1(а) и К572ПА2(б)

Урок 14: Аналого-цифровые и цифро-аналоговые преобразователи. Принципы работы АЦП и ЦАП

Упрощенная функциональная схема 8-битного инструмента - фотография 16 - изображение 16

Предыдущая15161718192021222324252627282930Следующая

Цифро-аналоговые преобразователи (ЦАП, DAC) и аналого-цифровые преобразователи (АЦП, ADC) главным образом применяются для сопряжения цифровых устройств и систем с внешними аналоговыми сигналами, с реальным миром. При этом АЦП преобразует аналоговые сигналы во входные цифровые сигналы, поступающие на цифровые устройства для дальнейшей обработки или хранения, а ЦАП преобразует выходные цифровые сигналы цифровых устройств в аналоговые сигналы.

ЦАП и АЦП применяются в измерительной технике (цифровые осциллографы, вольтметры, генераторы сигналов и т.д.), в бытовой аппаратуре (телевизоры, музыкальные центры, автомобильная электроника и т.д.), в компьютерной технике (ввод и вывод звука в компьютерах, видеомониторы, принтеры и т.д.), в медицинской технике, в радиолокационных устройствах, в телефонии и во многих других областях. Применение ЦАП и АЦП постоянно расширяется по мере перехода от аналоговых к цифровым устройствам. В качестве ЦАП и АЦП обычно применяются специализированные микросхемы, выпускаемые многими отечественными и зарубежными фирмами.

ЦАП

Сфера применения ЦАП очень широка. Это — усилители звука, аудиокодеки, обработка видео, устройства отображения, системы распознавания данных, калибровка датчиков и других измерительных устройств, схемы управления двигателями, системы распределения данных, цифровые потенциометры, программируемое радио (SDR) и т.д.

В общем случае микросхему ЦАП можно представить в виде блока, имеющего несколько цифровых входов и один аналоговый вход, а также аналоговый выход.

Аудио - фото 17 - изображение 17

Рисунок 54

На цифровые входы ЦАП подается n-разрядный код N, на аналоговый вход — опорное напряжение Uоп (другое распространенное обозначение — UREF). Выходным сигналом является напряжение Uвых (другое обозначение — U0) или ток Iвых (другое обозначение — I0). При этом выходной ток или выходное напряжение пропорциональны входному коду и опорному напряжению. Для некоторых микросхем опорное напряжение должно иметь строго заданный уровень, для других допускается менять его значение в широких пределах, в том числе и изменять его полярность (положительную на отрицательную и наоборот). ЦАП с большим диапазоном изменения опорного напряжения называется умножающим ЦАП, так как его можно легко использовать для умножения входного кода на любое опорное напряжение.

Принцип работы ЦАП заключается в суммировании аналоговых сигналов (ток или напряжение). Суммирование производится с коэффициентами, равными нулю или единице в зависимости от значения соответствующего разряда кода. Выходной сигнал ЦАП может иметь форму тока, напряжения или заряда. Преобразователи с токовым выходом используются в основном в прецизионных и высокочастотных схемах.

ЦАП преобразовывает сигнал в соответствии со следующей таблицей:

Таблица 8

Входной код Выходное напряжение, В
0,0000
0,3125
0,6250
0,9375
1,2500
1,5625
1,8750
2,1875
2,5000
2,8125
3,1250
3,4375
3,7500
4,0625
4,3750
4,6875

АЦП

Микросхемы АЦП выполняют функцию, прямо противоположную функции ЦАП, — преобразуют входной аналоговый сигнал в последовательность цифровых кодов. В общем случае микросхему АЦП можно представить в виде блока, имеющего один аналоговый вход, один или два входа для подачи опорного (образцового) напряжения, а также цифровые выходы для выдачи кода, соответствующего текущему значению аналогового сигнала. Часто микросхема АЦП имеет также вход для подачи тактового сигнала CLK, сигнал разрешения работы CS и сигнал, говорящий о готовности выходного цифрового кода RDY. На микросхему подается одно или два питающих напряжения и общий провод. В целом микросхемы АЦП сложнее, чем микросхемы ЦАП, их разнообразие заметно больше, и поэтому сформулировать для них общие принципы применения сложнее.

Изображение - изображение 18 - изображение 18

Рисунок 55

Опорное напряжение АЦП задает диапазон входного напряжения, в котором производится преобразование. Оно может быть постоянным или же допускать изменение в некоторых пределах. Иногда предусматривается подача на АЦП двух опорных напряжений с разными знаками, тогда АЦП способен работать как с положительными, так и с отрицательными входными напряжениями. Выходной цифровой код N (n-разрядный) однозначно соответствует уровню входного напряжения. Код может принимать 2n значений, то есть АЦП может различать 2n уровней входного напряжения. Количество разрядов выходного кода n представляет собой важнейшую характеристику АЦП. В момент готовности выходного кода выдается сигнал окончания преобразования RDY, по которому внешнее устройство может читать код N. Управляется работа АЦП тактовым сигналом CLK, который задает частоту преобразования, то есть частоту выдачи выходных кодов. Предельная тактовая частота — второй важнейший параметр АЦП. Сигнал CS разрешает работу микросхемы.

Для преобразования аналогового (непрерывного) сигнала в цифровой необходимо выполнить три операции: дискретизация, квантование и кодирование.

Дискретизация - это представление непрерывной функции (т. е. какого-то сигнала) в виде ряда дискретных отсчетов.

Механическая конструкция - фото 19 - изображение 19

Рисунок 56

При квантовании шкала сигнала разбивается на уровни. Отсчеты помещаются в подготовленную сетку и преобразуются в ближайший номер уровня квантования.

Основные типы цифро-аналоговых преобразователей - фотография 20 - изображение 20

Рисунок 57

Кодирование - это сопоставление элементов сигнала с некоторой кодовой комбинацией символов.

Предыдущая15161718192021222324252627282930Следующая .

ЦАП — что за штука и что он преобразует??

Производительность - фото 21 - изображение 21

 

Приветствую ценителей качественной музыки, интересующихся модными техническими новинками. Этот пост посвящен ЦАПу – устройству, позволяющие максимально раскрыть звуковые возможности ваших гаджетов. Что такое ЦАП?

Начнём с расшифровки аббревиатуры и тут все просто: цифровой аналоговый преобразователь. Это сложное электронное устройство, на вход которого подаются кодированные сигналы в двоичной системе, а на выходе мы имеем соответствующе им динамическое изменение напряжения и силы тока. Сфера использования данных приспособлений достаточно обширна, однако в нашей статье речь пойдёт о его применении для обработки звука.

Стоит признать тот факт, что оптимальной формой записи и хранения музыки или другой звуковой информации являются аудио файлы, закодированные различными способами. Благодаря популярным форматам и программам для их воспроизведения прослушать песню в таком виде можно и на компьютере, и на смартфоне, и на телевизоре, работающем с флеш-накопителями. Инструментом воспроизведения являются уже аналоговые устройства. Это могут быть как встроенные динамики, так и наушники, подключаемые через аудио выход.

 Секрет качественного звучания

Фактически в гаджетах уже имеется некое подобие цифро-аналогового преобразователя. Однако качество его работы может сильно отличаться в разных устройствах, что чувствуется по слышимому звуку. Чтобы достичь в этом направлении более-менее приличных результатов производители интегрируют отдельные ЧИПы и даже дискретные звуковые карты, которые как раз и созданы для этих целей.

Специальные процессоры для обработки кодированной цифры и трансляции ее в аналоговом формате стоят и в ЦАПах, но здесь они работают намного эффективней. Достигается это за счёт дополнительных электронных компонентов и своего блока питания, что позволяет выделить преобразователь в отдельное внешнее устройство.

Но главным достоинством такого ЦАПа является минимизация влияния помех, исходящих от сопряжённого аппарата. Именно этот принцип работы позволят на выходе получить кристально чистый аналоговый звук. Чего невозможно добиться с обычной звуковой картой (не имеющей его).

Максимальная частота - фотография 22 - изображение 22

Итак, мы плавно подошли к главному предназначению ЦАПа: не просто преобразовать содержимое файла в аналоговый сигнал, а сделать это наиболее качественно, обеспечив

  • качественное воспроизведение при существенном повышении громкости;
  • насыщенный динамический частотный диапазон;
  • минимизацию возможных помех;
  • усиление мощности звучания;
  • широкие возможности для точной настройки.

Я уже представляю себе, как загорелись глаза истинных меломанов и почитателей качественной музыки, сейчас впервые узнавших об этом необычайно полезном устройстве для преобразования звука.

Разновидности аудио ЦАПов

Но что это за чудо, спросите вы? И какое оно? И как его вообще можно использовать?

Начнём отвечать в обратном порядке. Условно, интересующие нас ЦАПы можно разделить на две категории: компактные (переносные) для работы с плеерами, смартфонами и стационарные, для подключения к компьютерам и телевизорам.

Первые подключаются к гаджету на IOS или Android через USB с помощью OTG и короткого экранированного кабелей. Возможно, понадобится установка сопутствующего приложения. Часто такие устройства имеют встроенный усилитель и аккумулятор, что позволяет использовать их и как пауэр-банк.

Монотонность - фотография 23 - изображение 23

Стационарные ЦАПы это солидные устройства выполненные, обычно, в алюминиевом корпусе, эффективно отводящем тепло. Многие оснащаются собственным дисплеем, аналоговыми регуляторами громкости и тембра. Главное их отличие, помимо высокой мощности, это наличие разнообразных разъемов для подключения всевозможных устройств:

  • Оптический (Toslink);
  • USB-B, позволяющий обходить звуковую карту и читать музыкальные файлы прямо с жёсткого диска;
  • Электрический (AES/EBU и SPDIF);
  • В некоторых устройствах имеется картридер и стандартный USB для флешек.

Общее гармоническое искажение и шум (THD + N) - изображение 24 - изображение 24

В обоих типах преобразователей используется вывод аналогового аудиосигнала через линейный RCA выход (под «тюльпаны»), mini-jack или jack для профессиональной акустики и высокоомных наушников.

Диапазон - фотография 25 - изображение 25

 

Как получить полный кайф от звучания?

Важный момент, на который стоит уделить внимание: чтобы ЦАП полностью раскрыл свои возможности, стоит позаботиться о том, чтобы подключаемая к нему акустика позволяла воспроизводить весь частотный диапазон. Лучше, если она будет Hi-Fi класса. Ещё лучше для стационарных устройств, если вы добавите в систему и усилитель такого же уровня. В этом случае от преобразователя вы получите максимум удовольствия.

Классификация цифро-аналоговых преобразователей - фото 26 - изображение 26

Выбор ЦАПа дело не сложное. Просто определитесь, для какого устройства он будет предназначен. А дальше изучите бренды производителей самих устройств и используемых в них чипов и выберете только проверенных.

Так же обратите внимание на разрядность обработки сигнала, которая бывает 16, 24 или 32-х битной. Однако здесь есть спорные вопросы. Одни логично полагают что больше – значит лучше. А для других реально слышимая разница в качестве звука настолько трудно различима, что не стоит внимания. Здесь уже решать вам.

Это всё, что касается того, что такое цап. Надеюсь, после прочтения этой статьи вы сразу приступите к изучению ассортимента ЦАПа в интернет-магазинах.

И не исключено, что, расширив возможности своей техники, у вас появится несколько интересных вопросов. Задавайте их мне, и вы обязательно получите на них ответы в новых обзорах и статьях. Желаю новых ощущений от приятного прослушивания любимой музыки, пока!

 

 

Цифро – аналоговый преобразователь

Усиление - изображение 27 - изображение 27

В процессе управления каким – то объектом необходимо следить за его состоянием. То есть следить за напряжением, током устройства а также различными не электрическими величинами, например скорость, перемещение, температура и так далее. В процессе обработки данных нам необходимо переводить физические величины в цифровой код, а также цифровой код переводить в физические величины. Для этого существуют такие устройства как аналого – цифровой преобразователь (АЦП) – который переводит физическую величину в код и цифро – аналоговый преобразователь (ЦАП) – он выполняет обратное действие АЦП. В данной статье мы рассмотрим цифро – аналоговый преобразователь (ЦАП).

Структурная схема преобразователя числа в напряжение реализованного на операционном усилителе показана ниже:

Производительность в частотной области - фото 28 - изображение 28

Здесь правая часть схемы представляет собой обычный сумматор с четырьмя входами. При подаче к входам напряжений U1, U2, U3, U4 получим на выходе:

Основные операции ЦАП - изображение 29 - изображение 29

Условимся что сопротивления резисторов соответствуют соотношениям 

Статья о цапах, зачем нужны, какие бывают. (задублировал то что писал для сообщества автозвук) - фотография 30 - изображение 30

Что такое ЦАП? - фото 31 - изображение 31

Аналого-цифровые преобразователи, назначение, структура, принцип действия - фото 32 - изображение 32

Аудио ЦАП AK4495seq своими руками. - фото 33 - изображение 33

, тогда :

alex-day ›Blog ›Цифро–Аналоговые Преобразователи. Основные типы и их параметры. - изображение 34 - изображение 34

Допустим что выходные напряжения равны один вольт, и с помощью четырех логических элементов обеспечим их появление только при условии, что будет подан сигнал из регистра в соответствии с числом. Если мы произведем запись в регистр числа 5, что равно 0101, то U1=0, U2=1, U3=0, U4=1. Из приведенного выше уравнения видно, что выходное напряжение будет равно Uвых=4+1= 5 В. На выходе ЦАП появится аналоговый сигнал, который будет соответствовать числу, которое  записано в регистр.

Схема ЦАП. Цифро-аналоговые преобразователи: типы, классификация, принцип работы, назначение

Аудио ЦАП AK4495seq своими руками - фото 35 - изображение 35

В электронике схема ЦАП представляет собой своеобразную систему. Именно она преобразует цифровой сигнал в аналоговый.

Существует несколько схем ЦАП. Пригодность для конкретного применения определяется показателями качества, включая разрешение, максимальную частоту дискретизации и другие.

Цифро-аналоговое преобразование может ухудшить посыл сигнала, поэтому необходимо найти такой инструмент, который имеет незначительные ошибки с точки зрения применения.

Приложения

ЦАП, как правило, применяются в музыкальных проигрывателях с целью переустройства числовых потоков информации в аналоговые аудиосигналы. Они, кроме того, используются в телевизорах и мобильных телефонах с целью переустройства, соответственно, видеоданных в видеосигналы, которые подсоединяются к драйверам экрана с целью отражения монохроматических либо разноцветных изображений.

Именно эти два приложения используют схемы ЦАП на противоположных концах компромисса между плотностью и количеством пикселей. Аудио — это низкочастотный тип с высоким разрешением, а видео — высокочастотный вариант с низким и средним изображением.

Из-за сложности и необходимости точно подобранных компонентов все, кроме самых специализированных ЦАП, реализованы в виде интегральных микросхем (ИС). Дискретные связи, как правило, являются чрезвычайно быстродействующими энергосберегающими типами с низким разрешением, которые используются в военных радиолокационных системах. Очень высокоскоростное испытательное оборудование, особенно пробоотборные осциллографы, также могут использовать дискретные ЦАП.

Обзор

Частично-постоянный выходной сигнал обычного ЦАП без фильтра встраивается практически в любое устройство, а начальное изображение или конечная полоса пропускания конструкции сглаживают отклик шага в непрерывную кривую.

Отвечая на вопрос: «Что такое ЦАП?», стоит отметить, что данный компонент преобразует абстрактное число конечной точности (обычно двоичная цифра с фиксированной запятой) в физическую величину (например, напряжение или давление). В частности, цифро-аналоговое преобразование часто используется для изменения данных временных рядов в непрерывно изменяющийся физический сигнал.

Идеальный ЦАП преобразует абстрактные цифры в концептуальную последовательность импульсов, которые затем обрабатываются с помощью фильтра реконструкции, используя некоторую форму интерполяции для заполнения данных между импульсами. Обычный практический цифро-аналоговый преобразователь изменяет числа в кусочно-постоянную функцию, составленную из последовательности прямоугольных моделей, которые создаются с удержанием нулевого порядка. Кроме того, отвечая на вопрос: «Что такое ЦАП?» стоит отметить и другие методы (например, основанные на дельта-сигма-модуляции). Они создают выход с модулированной плотностью импульсов, который можно аналогичным образом фильтровать для получения плавно изменяющегося сигнала.

Согласно теореме отсчетов Найквиста-Шеннона ЦАП может реконструировать исходную вибрацию из выборочных данных при условии, что его зона внедрения соответствует определенным требованиям (например, импульс основной полосы частот с линией пропускания меньшей плотности). Цифровая выборка представляет ошибку квантования, которая проявляется как шум низкого уровня в восстановленном сигнале.

Упрощенная функциональная схема 8-битного инструмента

Сразу же стоит отметить, что самой популярной моделью является цифро-аналоговый преобразователь Real Cable NANO-DAC. ЦАП является частью передовой технологии, которая внесла значительный вклад в цифровую революцию. Для иллюстрации стоит рассмотреть типичные междугородние телефонные звонки.

Голос вызывающего абонента преобразуется в аналоговый электрический сигнал с помощью микрофона, а затем данный импульс изменяется уже в цифровой поток вместе с ЦАП. Вслед за тем последний разделяется на сетевые пакеты, где он может быть отправлен вместе с другими цифровыми данными. И это может быть необязательно аудио.

Затем пакеты принимаются в месте назначения, но каждый из них может идти по совершенно разному маршруту и даже не достигать места назначения в правильном порядке и в нужное время. Цифровые речевые данные затем извлекаются из пакетов и собираются в поток общих данных. ЦАП преобразует это обратно в аналоговый электрический сигнал, который приводит в действие аудиоусилитель (например, цифро-аналоговый преобразователь Real Cable NANO-DAC). А он, в свою очередь, активирует громкоговоритель, который, наконец, производит необходимый звук.

Аудио

Большинство современных акустических сигналов хранятся в цифровом виде (например, MP3 и CD). Для того чтобы их можно было услышать через динамики, они должны быть преобразованы в похожий импульс. Таким образом можно найти цифро-аналоговый преобразователь для телевизора, проигрывателя компакт-дисков, цифровых музыкальных систем и звуковых карт для ПК.

Специализированные автономные ЦАП также можно найти в высококачественных Hi-Fi системах. Обычно они принимают цифровой выход совместимого проигрывателя компакт-дисков или выделенного транспорта и преобразуют сигнал в аналоговый выход линейного уровня, который затем можно подавать в усилитель для управления динамиками.

Подобные цифро-аналоговые преобразователи можно найти в цифровых столбцах, таких как колонки USB, и в звуковых картах.

В приложениях, использующих трансляцию голоса по IP, источник должен быть сначала оцифрован для передачи, поэтому он подвергается преобразованию через АЦП, а затем преобразовывается в аналоговый с использованием ЦАП на принимающей стороне. Например, такой способ применяется для некоторых цифро-аналоговых преобразователей (телевизор).

Изображение

Цап принцип работы - фотография 36 - изображение 36

Сэмплирование имеет тенденцию работать в совершенно ином масштабе, в целом, благодаря крайне нелинейному отклику как электронно-лучевых трубок (для которых предназначалось подавляющее большинство работ по созданию цифрового видео), так и человеческого глаза, используя гамма-кривую для обеспечения появление равномерно распределенных ступеней яркости по всему динамическому диапазону дисплея. Отсюда необходимость использования RAMDAC в компьютерных видеоприложениях с довольно глубоким цветовым разрешением, чтобы непрактично создавать жестко закодированное значение в ЦАП для каждого выходного уровня каждого канала (например, для Atari ST или Sega Genesis понадобится 24 таких значения; для 24-битной видеокарты потребуется 768).

Учитывая это врожденное искажение, для телевизионного или видеопроектора нередко правдиво заявляется, что линейный коэффициент контрастности (разница между самыми темными и яркими выходными уровнями) составляет 1 000:1 или более. Это эквивалентно 10 битам верности звука, даже если он может только принимать сигналы с 8-битной точностью и использовать ЖК-панель, отображающую едва лишь шесть или семь бит на канал. На этой основе публикуются обзоры ЦАПов.

Видеосигналы от цифрового источника, такого как компьютер, должны быть преобразованы в аналоговую форму, если необходимо их отображение на мониторе. С 2007 года похожие входы использовались чаще, чем цифровые, но это изменилось, так как плоские дисплеи с подключениями DVI или HDMI стали более распространенными. Однако ЦАП для видео встроен в любой цифровой видеоплейер с такими же выходами. Цифро-аналоговый преобразователь звука обычно интегрируется с некоторой памятью (ОЗУ), которая содержит таблицы реорганизации для гамма-коррекции, контрастности и яркости, чтобы создать приспособление под названием RAMDAC.

Устройство, которое отдаленно связано с ЦАП, представляет собой потенциометр с цифровым управлением, используемый для улавливания сигнала.

Механическая конструкция

Цап принцип работы - фотография 37 - изображение 37

Например, в печатной машинке IBM Selectric уже используется неручной ЦАП для управления шариком.

Схема цифро-аналогового преобразователя выглядит так.

Однобитовый механический привод принимает два положения: одно при включении, другое при выключении. Движение нескольких однобитовых исполнительных механизмов может быть объединено и взвешено с помощью устройства без колебаний для получения более точных шагов.

Именно пишущая машинка IBM Selectric использует такую систему.

Основные типы цифро-аналоговых преобразователей

  1. Широтно-импульсный модулятор, где стабильный ток или напряжение переключается в низкочастотный аналоговый фильтр с длительностью, определяемой с помощью цифрового входного кода. Этот метод зачастую применяется с целью управления скоростью электродвигателя и затемнения светодиодных ламп.
  2. Цифро-аналоговый аудио-преобразователь с избыточной дискретизацией или интерполяционные ЦАП, например, использующие дельта-сигма-модуляцию, используют метод изменений плотности импульсов. Скорости более 100 тысяч выборок в секунду (например, 180 кГц) и разрешение 28 бит достижимы с помощью устройства с дельта-сигмой.
  3. Двоично-взвешенный элемент, который содержит отдельные электрические компоненты для каждого бита ЦАП, подключенного к точке суммирования. Именно она может складывать операционный усилитель. Сила тока источника пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Это происходит, поскольку они имеют в распоряжении один и тот же источник напряжения. Это единственный из наиболее быстрых способов преобразования, но он не идеален. Так как есть проблема: низкая верность из-за больших данных, необходимых для каждого отдельного напряжения или тока. Такие высокоточные компоненты дорогие, поэтому этот тип моделей обычно ограничен 8-битным разрешением или даже меньше. Коммутируемый резистор имеет назначение цифро-аналоговых преобразователей в параллельных источниках сети. Отдельные экземпляры включены в электричество на основе цифрового входа. Принцип работы цифро-аналогового преобразователя этого типа заключается в коммутируемом источнике тока ЦАП, из которого выбираются разные ключи на основе числового входа. Он включает синхронную конденсаторную линию. Эти единичные элементы подключаются или отключаются с помощью специального механизма (лапки), который находится около всех штекеров.
  4. Цифро-аналоговые преобразователи лестничного типа, который представляет собой бинарный-взвешенный элемент. Он, в свою очередь, использует повторяющуюся структуру каскадных значений резистора R и 2R. Это повышает точность из-за относительной простоты изготовления механизма с одинаковым номиналом (или источников тока).
  5. Последовательное наступление либо цикличный ЦАП, который один за другим строит выходные данные в течение каждого этапа. Отдельные биты цифрового входа обрабатываются всеми разъемами, пока не будет учтен весь объект.
  6. Термометр - кодированный ЦАП, который содержит равный резистор или ток-источник сегмент для каждого возможного значения выхода ЦАП. 8-разрядный ЦАП градусника будет располагать 255 элементами, а 16-заряженный ЦАП термометра будет иметь 65 535 частей. Это, пожалуй, самая быстрая и высокоточная архитектура ЦАП, но за счет высокой стоимости. Благодаря этому типу ЦАП достигнуты скорости преобразования более одного миллиарда выборок в секунду.
  7. Гибридные ЦАПы, которые используют комбинацию вышеуказанных методов в одном преобразователе. Большинство интегральных микросхем ЦАП относятся к этому типу из-за сложности одновременного получения низкой стоимости, большой скорости и правильности в одном приборе.
  8. Сегментированный ЦАП, который объединяет принцип кодирования термометра для старших разрядов и двоичного взвешивания для младших компонентов. Таким образом достигается компромисс между точностью (с помощью принципа кодирования термометра) и количеством резисторов или источников тока (с использованием бинарного взвешивания). Глубокое устройство с двойным действием означает сегментацию 0 %, а конструкция с полным термометрическим кодированием — имеет 100 %.

Большинство DACS, представленные в этом списке, полагаются на постоянное опорное напряжение, чтобы создать их выходное значение. В качестве альтернативы умножающий ЦАП принимает переменное входное напряжение для их преобразования. Это накладывает дополнительные конструктивные ограничения на полосу пропускания схемы реорганизации. Теперь понятно, для чего нужны цифро-аналоговые преобразователи разных видов.

Производительность

ЦАП очень важны для плодотворности системы. Наиболее значительные характеристики этих устройств - это разрешение, которое создано для применения цифро-аналогового преобразователя.

Количество возможных выходных уровней, которые ЦАП предназначены для воспроизведения, обычно указывается как количество битов, которые оно использует, именно это является основанием два логарифма числа уровней. Например, 1-битный ЦАП предназначен для воспроизведения двух, тогда как 8-битный создан для 256 схем. Дополнение связано с эффективным числом битов, которое является измерением фактического позволения, достигнутого ЦАП. Разрешение определяет глубину цвета в видеоприложениях и битовую частоту звука в аудиоустройствах.

Максимальная частота

Цап принцип работы - изображение 38 - изображение 38

Измерение наибольшей скорости, на которой схема ЦАП может работать и при этом вырабатывать правильный выходной сигнал, определяет взаимосвязь между ним и шириной полосы дискретизированного сигнала. Как указано выше, теорема отсчетов Найквиста – Шеннона связывает непрерывные и дискретные сигналы и утверждает, что любой сигнал может быть восстановлен с любой точностью по своим дискретным отчетам.

Монотонность

Цап принцип работы - фото 39 - изображение 39

Это понятие означает способность аналогового выхода ЦАП перемещаться только в направлении, в котором движется цифровой вход. Эта характеристика очень важна для ЦАП, используемых как низкий источник сигнала частоты.

Общее гармоническое искажение и шум (THD + N)

Измерение искривлений и посторонних звуков, вносимых ЦАП в сигнал, выражается в процентах от общей мощности нежелательных гармонических искажений и шума, которые сопровождают желаемый сигнал. Это очень важная характеристика для приложений ЦАП с динамическим и малым выходом.

Диапазон

Измерение разницы между самым большим и маленьким сигналами, которые ЦАП может воспроизводить, выраженное в децибелах обычно связано с разрешением и уровнем шума.

Другие измерения, такие как искажение фазы и джиттер, также могут быть очень важны для некоторых приложений. В них есть те (например, беспроводная передача данных, композитное видео), которые могут даже полагаться на точное получение сигналов с фазовой регулировкой.

Линейная выборка звука PCM обычно работает на основе разрешения каждого бита, эквивалентного шести децибелам амплитуды (увеличение громкости или точности в два раза).

Нелинейные кодировки PCM (A-law / μ-law, ADPCM, NICAM) пытаются улучшить их эффективные динамические диапазоны различными способами — логарифмическими размерами шага между уровнями выходного звука, представленными каждым битом данных.

Классификация цифро-аналоговых преобразователей

Цап принцип работы - фотография 40 - изображение 40

Классификация по нелинейности разделяет их на:

  1. Отличительная нелинейность, которая показывает, насколько два соседних кодовых значения отклоняются от безукоризненного шага 1 LSB.
  2. Накопленная нелинейность показывает, насколько передачи ЦАП отклоняется от идеальной.

То есть идеальной характеристикой обычно является прямая линия. INL показывает, насколько фактическое напряжение при данном значении кода отличается от этой линии в младших битах.

Усиление

Цап принцип работы - фотография 41 - изображение 41

В конечном итоге шум ограничивается тепловым гулом, создаваемым пассивными компонентами, такими как резисторы. Для аудиоприложений и при комнатной температуре такой звук обычно составляет чуть менее 1 мкВ (микровольт) белого сигнала. Это ограничивает продуктивность менее 20 бит даже в 24-битных ЦАП.

Производительность в частотной области

Динамический диапазон без паразитов (SFDR) указывает в дБ касательство мощностей преобразованного основного сигнала и наибольшего нежелательного выброса.

Отношение шума и искажения (SNDR) указывает в дБ свойство мощностей преобразованного основного звука к его сумме.

Общее слаженное искажение (THD) является сложением мощностей всех HDi.

Если максимальная ошибка DNL меньше 1 LSB, то цифро-аналоговый преобразователь гарантированно будет однообразным. Однако многие монотонные инструменты могут иметь максимальное значение DNL больше 1 LSB.

Производительность во временной области:

  1. Импульсная зона глитча (энергия глюка).
  2. Неопределенность ответа.
  3. Время нелинейности (ТНЛ).

Основные операции ЦАП

Цап принцип работы - фото 42 - изображение 42

Аналого-цифровой преобразователь принимает точное число (чаще всего двоичное количество с фиксированной запятой) и преобразует его в физическую величину (например, напряжение или давление). ЦАП часто используются для реорганизации данных временных рядов конечной точности в непрерывно изменяющийся физический сигнал.

Идеальный цифро-аналоговый преобразователь берет абстрактные числа из последовательности импульсов, которые затем обрабатываются с использованием формы интерполяции для заполнения данных между сигналами. Обычный цифро-аналоговый преобразователь помещает числа в кусочно-постоянную функцию, состоящую из последовательности прямоугольных значений, которая моделируется с удержанием нулевого порядка.

Преобразователь восстанавливает исходные сигналы так, чтобы его полоса пропускания соответствовала определенным требованиям. Цифровая выборка сопровождается ошибками квантования, которые создают шум низкого уровня. Именно он добавляется к восстановленному сигналу. Минимальная амплитуда аналогового звука, который может привести к изменению цифрового, называется наименьшим значащим битом (LSB). А ошибка (округления), возникающая между аналоговым и цифровым сигналами, называется погрешностью квантования.

Статья о цапах, зачем нужны, какие бывают. (задублировал то что писал для сообщества автозвук)

Цап принцип работы - фотография 43 - изображение 43

Пишет Yareg в своём блоге.

Собирая себе комп в машину, пришлось рыть просторы инета, думаю что инфа будет полезна

Причем не только обладателям CarPC но и обладателям ГУ.

Цифро-аналоговый преобразователь (ЦАП) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.Аналого-цифровой преобразователь (АЦП) производит обратную операцию.Звуковой ЦАП о… бла бла бла оч длинная статья на вики ()

На что там (вики) обращаем внимание

ПрименениеЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт дисков…

Типы ЦАП

Наиболее общие типы электронных ЦАП:

Широтно-импульсный модулятор— простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;

ЦАП передискретизации, такие как дельта-сигма-ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаютсятребования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.• Разрядность — количество различных уровней выходного сигнала, которые ЦАП может воспроизвести. Обычно задается в битах; количество бит есть логарифм по основанию 2 от количества уровней. Например, однобитный ЦАП способен воспроизвести два (2 в первой степени) уровня, а восьмибитный — 256 (2 в восьмеой степени) уровней. Разрядность тесно связана с эффективной разрядностью (англ. ENOB, Effective Number of Bits), которая показывает реальное разрешение, достижимое на данном ЦАП.• Максимальная частота дискретизации — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Найквиста — Шеннона (известной также как теорема Котельникова), для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.

________________________________________

К чему это все.

Когда посетила первая мысль поставить вместо ГУ кар писишку, первым плюсом, надо сказать основным (для меня), было то что можно менять звуковые карты, мне показалась данная возможность более интересной чем менять головы целиком.

Во первых потому что в головы как не крути, лепят одно и тоже, т.е. если утрировать, у производителея Х есть линейка голов, начальная цена 1000 вымешленных едениц, конечная, за топ модель 10 000 едениц.На моменты выбора, больше по слухам чем по собственной практике, сделал вывод, что в большинстве случаев, что в дешевой что в дорогой голове, скорее всего один и тот же ЦАП, а ценник растет из-за функционала, более удобные кнопочки, на те еще +500 к цене, несколько подсветок еще 500 к цене, дизайн ваще бесценен и т.д., а цап как был так и остался прежним, если же речь идет о хорошем ЦАПе, то ты заплатишь и за дизайн и за подсветку и еще за кучу всякой ненужной фигни, в итоге голова "золотая" и очень зависимая от того же допустим привода, сдох привод, не смогли починить, купи новую бошку.Не прельщало честно, тем более была практика, когда при попытке третий раз починить мой альпайн 9845 RB, мастер сказал что все, уже шансов нет, тупо выкинь. Толи мастер такой был, толи альп ставить в копейку было не рационально, это не важно. Он мне был оч дорог, первый более менее хороший аппарат, который я слушал.

Так вот провел небольшое расследование.Имеем список (я почему-то назвал таблицей) ЦАПов (кликабельно)

Подопытным был выбран Pioneer DEX-P99RS вроде неплохая голова, сам не слушал, но хвалят и претензий к ней никаких. Ценник аппарата по яндексмаркету 30-35 рублей, вполне стоящий (могут быть конечно отклонения но не о цене щас речь), из описаний везде пестрит"Число бит ЦАП 24"" 16-битные цифровые данные с CD напрямую передаются 4 x 24-битными цифро-аналоговыми преобразователями (ЦАП) с минимальным искажением"

Далее нужно чуть попариться поискать какой же ЦАП (он же DAC) установлен в данном ГУ, логичнее искать datasheet но получилось найти только по словосочетанию servise manual Pioneer DEX-P99RS, открываем смотрим

Цап принцип работы - изображение 44 - изображение 44

Цап принцип работы - фото 45 - изображение 45

Сразу скажу что я в такой документации неочень ориентируюсь но вроде нашел все правильно, ну по крайней мере я нашел 4 ЦАП-а скорее всего это они и есть.ЦАП под номером AK4396VF.

Сначала меня сбило с толку что его нет в таблице, приведенной выше, но потом он нашелся чуть пониже в аппарате " MYTEK DIGITAL STEREO96 DAC" сам цап выделен синим цветом, т.е. для автора особо неприметный чип, но P99RS играет же хорошо, значит ищем где есть такой же цапик.

Что дальше…а решил загуглить AK4396VF, дабы найти где этот ЦАП засветился, в надежде найти звуковую карточку с ним, как результат:

1. HT Omega Claro Halo XT HiFi soundcard2. HT Omega Claro Plus+ AD8620BR Op Amp Sound Card3. Auzentech X-fi Forte 7.1 SoundcardМожно конечно и поболее инфы нарыть, но цель статьи не найти что-то, а показать логику поиска, ну и так сказать подтолкнуть к поиску звуковых карт на тех ЦАП которые считаются супер пупер нереальными.Да конечно я понимаю что карта может не заиграть как тот же Pioneer DEX-P99RS, хотя я тут вообще ничего не скажу, нужно пробовать, но я думаю если вставить карточку с более продвинутым ЦАПом, а если она еще будет хорошо исполнена, то полюбому заиграет лучше чем некоторые топовые головы.А да, ценник на карту в пределах 9 тыщ рублей, правда наверное будут проблемы с покупкой, в России не нашел, хотя опять же не сильно искал, да и заказать например на амазоне не проблема.Само собой после карты не должно быть процессора, я так понимаю это все понимают :)

И роде как, по словам производителяUsing AKM's multi bit architecture for its modulator the AK4396 delivers a wide dynamic range while preserving linearity for improved THD+N performanceэто реальный мультибитник, причем 24х.

Ну и ковыряясь в просторах, решил еще проверить Alpine PXI-H990, надож дать повод для флуда :)

По даннным с офф сайта ALPINE

ALPINE F#1 STATUSДля обеспечения высочайшего качества звучания и поддержки возможностей формата DVD-Audio в процессоре Alpine PXI-H990 используются восемь сверхдорогих ЦАПов Burr-Brown Sign Magnitude 96 кГц/24 бит К-Grade и сложнейший цифровой фильтр типа GIC.

гуглим Burr-Brown Sign Magnitude получаем :

Маркировка PCM1704Производитель Burr-Brown Corporation (www.burr-brown.com)

Комментарий 24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER

Функционал Цифро-аналоговые конверторы (DAC (Digital to Analog Converters))

Смотрим таблицу цапов PCM1704

PCM1704 20 бит, то же, что PCM1702, но только способный принимать 24-битный поток (преобразование все-равно 20-битное)

Т.е. если не наврали с предыдущим "кроликом" у альпа стоит 20 битный а у пионера 24-х :)Но есть одно важное НО

" Грейды :"L" — самый низкий (Low) — хуже, чем вообще без грейда"J" — отобранный, лучше, чем безгрейдовый"K" — отобранный, самый лучший по качеству (лучше "J")"PCM1704-K т.е. данный ЦАП очень хорош.

Подводя итоги, не знаю даже что сказать.Когда вы спрашиваете, или пытаетесь выбрать самостоятельно ГУ, но незнаете на что обратить внимание, яб порекомендовал обратить его именно на то какой внутри ЦАП. Конечно речь идет о выборе не бюджетного варианта.По идее поиск хороших цапов доступен не только кар писишникам, но и юзерам обычных ГУ, просто нужно рыть даташыты, ну а если твикать, то тут вообще открываются безграничные просторы.

Вообще инфы перечитал много, выложил более менее интересные и основные (на мой взгляд аспекты)

можно добавить еще следующую информацию — player.ru/showthread.php?…339&viewfull=1#post763339

Отличная статья)Только вот если используется проц по оптике, то нет разницы какой ЦАП стоит в приводе)

У вас в системе проца не будет?

Что такое ЦАП?

Цап принцип работы - фото 46 - изображение 46

Современное потоковое вещание, а также большинство носителей аудио/видео (CD, DVD, Bluray, флеш-память) основаны на применении цифровой технологии. По сравнению с аналоговыми носителями она даёт возможность хранить и передавать значительные объёмы мультимедиа-контента высочайшего качества и без потерь сигнала. Однако глаза и уши человека воспринимают окружающий мир именно аналоговыми, поэтому для «расшифровки» требуется специальный преобразователь. 

Принцип работы 

Аудио ЦАП (англ. «audio DAC») представляет собой устройство, преобразующее цифровой (как правило - двоичный) код в аналоговый сигнал. Электронная цепь в любом звуковоспроизводящем аппарате выглядит достаточно просто: цифровой носитель > цап > звук. На выход подаётся ток с определённым напряжением, а дальше через цепь усилителей звуковой сигнал достигает акустических систем. Таким образом DAC (ЦАП) является электронным интерфейсом между цифровым и аналоговым миром. 

Конструкция и тип исполнения 

В простейших устройствах звуковоспроизведения (mp3-плееры, смартфоны, магнитолы) преобразователи обычно выполнены в виде небольшой микросхемы. Для примера можно взять простой медиаплеер, ЦАП которого позволяет через разъёмы RCA или mini-jack 3.5mm подключать напрямую активную акустику. Говорить о высоком качестве аудиотракта здесь не приходится, однако звучание получается подходящим для большинства нетребовательных слушателей. 

Какой цап купить для компьютера? 

В более «продвинутой» аппаратуре используется компонентное построение звуковоспроизводящей системы. Пример: звуковая карта компьютера или hi fi CD-плеер с оптическим/коаксиальным выходом, качественная активная акустика и простейший внешний цап, купить который можно за несколько тысяч рублей. Исполнение такого аппарата может быть достаточно компактным (даже размером со спичечный коробок), что совсем не мешает качественно выполнять свою основную функцию - преобразование цифрового потока данных в звуковой сигнал без помех и потерь. 

Лучшие ЦАПы для Hi-Fi и Hi-End 

Если же цель состоит в том, чтобы (ЦАП) цифро аналоговый преобразователь купить для построения референсной системы hi end уровня, то здесь исполнение устройства может быть только внешним, а конструкция аппарата представляет собой компонент аудиокомплекса с «полноценными» стандартными размерами. В некоторых случаях стандартные входы «optical in» и «coaxial in» могут быть дополнены разъёмом USB для подключения к ПК. При этом блок питания преобразователя может быть выполнен внутри самого аппарата или иметь внешнее исполнение.

Аналого-цифровые преобразователи, назначение, структура, принцип действия

Цап принцип работы - фотография 47 - изображение 47

Аналого-цифровые преобразователи (АЦП) – это устройство, с помощью которого происходит процесс преобразования в числовое представление входной физической величины. В качестве входной величины может быть ток, напряжение, сопротивление, емкость.

АЦП тесно связан с понятием измерения, под которым имеется в виду процесс сравнения с эталоном измеряемой входной величины. То есть аналогово-цифровое преобразование рассматривается в качестве измерения значения входного сигнала и, соответственно, к нему можно применять понятия погрешности измерения.

АЦП обладает рядом характеристик, главными из которых являются разрядность и частота преобразования. Разрядность выражается в битах, а частота преобразования – в отсчетах в секунду. Чем выше разрядность и скорость, тем сложнее приобрести необходимые характеристики и тем сложнее и дороже преобразователь.

Принцип АЦП, состав и структурные схемы в значительной мере зависят от метода преобразований.

Классификация

В настоящее время известно большое число методов преобразования напряжение-код. Эти методы существенно отличаются друг от друга потенциальной точностью, скоростью преобразования и сложностью аппаратной реализации. На рис. 2 представлена классификация АЦП по методам преобразования.

Среди разновидностей аналого-цифровых преобразователей, наиболее популярными являются:

1. АЦП параллельного преобразования. Обладают низкой разрядностью и высоким быстродействием. Принцип действия заключается в поступлении входного сигнала на «плюсовые» входы компараторов, а ряд напряжений подается на «минусовые». Работа компараторов осуществляется параллельно, время задержки схемы складывается из времени задержки в одном компараторе и времени задержки в шифраторе. Исходя из этого, шифратор и компаратор можно сделать быстрыми и схема получит высокое быстродействие. 2. АЦП последовательного приближения. Осуществляет измерение величины входного сигнала, производя ряд «взвешиваний» или сравнений величин входного напряжения и ряда величин. Характеризуется высокой скоростью преобразования и ограничен точностью внутреннего ЦАП.

Цап принцип работы - фотография 48 - изображение 48

3. АЦП с балансировкой заряда. Принцип действия заключается в сравнении входного напряжения со значением напряжения, которое накоплено интегратором. Импульсы подаются на вход интегратора отрицательной или положительной полярности, исходя из результата сравнения. В итоге, напряжение на выходе «прослеживает» за входным напряжением. Характеризуется высокой точностью при низкком уровне собственного шума.

Аналого-цифровое преобразование используется везде, где требуется принимать аналоговый сигнал и обрабатывать его в цифровой форме.

  • АЦП является составной частью цифрового вольтметра и мультиметра.
  • Специальные видео-АЦП используются в компьютерных ТВ-тюнерах, платах видеовхода, видеокамерах для оцифровки видеосигнала. Микрофонные и линейные аудиовходы компьютеров подключены к аудио-АЦП.
  • АЦП являются составной частью систем сбора данных.
  • АЦП последовательного приближения разрядностью 8-12 бит и сигма-дельта-АЦП разрядностью 16-24 бита встраиваются в однокристальные микроконтроллеры.
  • Очень быстрые АЦП необходимы в цифровых осциллографах (используются параллельные и конвеерные АЦП)
  • Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика (сигма-дельта-АЦП).
  • АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора.
  • Сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в антенных решётках РЛС.

34. Цифро-аналоговые преобразователи, назначение, структура, принцип действия.

Цифро-аналоговый преобразователь (ЦАП) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.

Аналого-цифровой преобразователь (АЦП) производит обратную операцию.

Звуковой ЦАП обычно получает на вход цифровой сигнал в импульсно-кодовой модуляции. Задача преобразования различных сжатых форматов в PCM выполняется соответствующими кодеками.

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).

Аудио ЦАП AK4495seq своими руками.

Цап принцип работы - фотография 49 - изображение 49

Сегодня я продолжу рассказывать о своем хобби - сборке различных аудио устройств.

Технические характеристики:

Диапазон воспроизводимых частот 20Гц - 20кГц. - зависит от частоты дискретизации воспроизводимого файла.Уровень собственных шумов -110дБДинамический диапазон 110 дБКоэффициент гармонических искажений 0.0004%Взаимное проникновение каналов -105дБИнтермодуляционные искажения 0,0017%

По сложившейся здесь традиции, сразу публикую фото готового устройства, а уже потом процесс его создания:

Цап принцип работы - фото 50 - изображение 50

Сегодня я наконец готов рассказать о том, как я собираю цифро-аналоговые преобразователи (ЦАП). Тот, о котором дальше пойдет речь уже третий по счету. Первый - был для меня настоящим вызовом. Я даже сам не представлял как я справлюсь с такой задачей. Теперь же спустя несколько лет, я уже не вижу в этом особых сложностей. Поэтому, если кто-то еще так же как и я вдохновляется хорошей музыкой и кому хочется самому собрать для себя цап наивысшего качества по вполне бюджетной цене - присаживайтесь по-удобнее.

Первый в своей жизни ЦАП на микросхеме AK4495seq я собрал для своего друга, т.к. он не мог найти достойного качества по разумной цене. С тех пор все цапы я собираю на этой микросхеме. Мы вместе выбирали и сравнивали разные готовые модели цапов в интернет-магазинах и в итоге поняли, что требуемое качество совершенно не подходит по цене. В итоге было решено попробовать собрать цап самостоятельно. В итоге цапом остались довольны.

Первый вопрос, который меня волновал, это то, что понадобится какой-то драйвер для usb под windows. Написать его самостоятельно я точно не смогу. Изучив тему, я понял, что и не придется. Cегодня на рынке топовых решений существует два варианты - это относительно дешевые usb интерфейсы на микросхеме XMOS U8 и прямой его конкурент с чуть лучшими характеристиками Amanero. Для этих плат уже есть драйверы, написанные разработчиками. Для Mac OS и Linux драйверы и вовсе не нужны. Платы конвертируют сигнал от шины usb в шину I2S, по которой принимают данные все современные цапы. Все, что требуется, это соединить его по шине I2S проводами к соответствующим пинам. Обычно они подписаны на плате. Оба интерфейса 32 битные и поддерживают частоты дискретизации вплоть до фантастических 384кГц. Также они поддерживают воспроизведение DSD файлов. XMOS u8 до DSD256, а Amanero до DSD512. Музыку в таком качестве мне удалось найти всего лишь на одном сайте. И это в основном классика. Около 20 композиций на сегодняшний день.

Небольшое отступление в теорию.

Сразу хочу объяснить для чего такие заоблачные характеристики. Многие подумают, что и 44.1кГц, которые поддерживают все устройства сегодня, вполне достаточно. Обычно такие люди сразу вспоминают теорему Найквиста-Котельникова. Забывая при этом, что она сформулирована для непрерывных гармонических сигналов, которыми музыка не является. Суть теоремы состоит в том, что непрерывный сигнал с ограниченным спектром можно абсолютно точно представить набором его отдельных значений («отсчетов»), следующих с равными интервалами, при условии, что частота следования этих отсчетов, как минимум, вдвое превышает верхнюю границу спектра указанного сигнала. То есть для цифрового представления максимальной частоты, слышимой человеком (20 кГц), нам понадобится частота дискретизации в два раза больше - 40 кГц. Для наглядности приведу фото. Но возьмем частоту не в двое, а в 4 раза меньше частоты дискретизации - 11025 кГц. Такую частоту совершенно точно слышат все люди, а не только летучие мыши. Вот так примерно выглядит аналоговый непрерывный синусоидальный сигнал с частотой в 11,025кГц на экране осциллографа

Цап принцип работы - фотография 51 - изображение 51

А вот так выглядит его цифровое представление при частоте дискретизации 44100 Гц:

Цап принцип работы - изображение 52 - изображение 52

Как видно, сохраняется только частота сигнала, но никак не его форма. Что не удивительно, т.к. на один период сигнала приходится всего 4 отчета. И это еще если частота сигнала кратна частоте дискретизации. А если взять не кратную, например 10 кГц ровно, то получится, что отчеты уже не будут приходиться на максимумы и минимумы нашего исходного сигнала и картина изменится:

Цап принцип работы - фотография 53 - изображение 53

Как можно заметить, изменяется даже амплитуду сигнала.А вот так выглядит тот же сигнал в 11025Гц, представленный в цифровом виде с частотой дискретизации 192кГц:

Цап принцип работы - изображение 54 - изображение 54

Уже гораздо больше похоже на оригинал, т.к. отчетов на один период выходит 18 и сигнал описывается точнее. Я считаю, что этого вполне достаточно. Конечно данную проблему можно с успехом решить различного рода фильтрами и апсэмплингом, что и делается сегодня, и благодаря чему дискретизации с частотой 44100 Гц достаточно абсолютному большенству. Но этой теме можно посвятить отдельную научную статью. Надеюсь, теперь отпадет вопрос в необходимости частот дискретизации 96 кГц и192 кГц.

После небольшого отступления возвращаемся обратно.

Сейчас же я собираю цап уже для себя.Свой выбор usb интерфейса я остановил на Amanero, т.к. до этого делал на микросхеме XMOS U8, а теперь хотел узнать про второй. Вопрос выбора микросхемы цап был решен уже тогда, когда я собирал первый вариант для своего школьного друга. Это все та же AK4495seq. Это 32 битный чип (вместе с amanero получается полностью 32 битное устройство). Максимальная частота дискретизации еще более впечатляет - 768кГц. Поддерживает воспроизведение DSD файлов 2.8МГц 5.6МГц (DSD64 и DSD128) в режиме native, без конвертации в PCM формат.Также после микросхемы цапа должен стоять буферный усилитель выполненный по схеме активного фильтра нижних частот, для эффективной фильтрации воспроизводимого диапазона. Рекомендуемая его схема уже представлена в datasheet к цапу и выглядит следующим образом:

Цап принцип работы - изображение 55 - изображение 55

На каждый канал требуется по 3 монофогических операционных усилителя NJM5534D. Такое решение позволяет достичь заявленных производителем характеристик готового цапа.Мне удалось найти печатную плату, выполненную по такой схеме и набор подобранных радиолэлементов к ней. Это сильно упрощает задачу.

Цап принцип работы - фото 56 - изображение 56

Цап принцип работы - фотография 57 - изображение 57

Цап принцип работы - фотография 58 - изображение 58

Я предпочитаю всегда брать не собранные варианты, т.к. качество китайской пайки зачастую низкое, а также я получаю большее удовольствие от сборки, когда паяю сам. К тому же это позволяет еще и сэкономить, т.к. не собранные платы еще и дешевле.Вот, к примеру, как должен вытекать припой на обратную сторону платы по ножке радиоэлемента, чтобы можно было говорить о качественной пайке, также при правильно подобранной температуре жала паяльника, пайка получается блестящей. Обязательно следует отмывать платы от флюса, даже если на нем написано, что этого допускается не делать.

Цап принцип работы - фотография 59 - изображение 59

Заранее я прикидывал компоновку плат в корпусе, не без помощи, конечно.  

Цап принцип работы - фото 60 - изображение 60

На фото можно заметить уже собранный усилитель для наушников, который я хотел установить в корпус цапа, но кошак сказала, что так делают только оч маленькие дети и все равно он не помещается, еще кошак передавала привет stalker29218.Ну что ж, кошак дело говорит. Решено было сделать так:

Цап принцип работы - изображение 61 - изображение 61

На фото стабилизатор двуполярного питания на LM317 LM337 + TL431 с возможностью регулировки выходного напряжения подмтроечными резисторами для положительного и отрицателного плеча, ниже плата цапа и нч-фильтра, usb интерфейс Amanero, 2 трансформатора отдельно для аналоговой и цифровой схемы, рядом с которыми фильтр от электромагнитных помех в питающей сети. Питание цапа реализовано на самой плате. К моменту фотографии уже был сделан тестовый запуск.Все платы были закреплены на стойки к металлическому дну, толщина которого позволила нарезать резьбу и закрепить платы без гаек заподлицо.

Цап принцип работы - фотография 62 - изображение 62

Цап принцип работы - фото 63 - изображение 63

Цап принцип работы - фото 64 - изображение 64

Итого 28 отверстий с резьбой, включая 4 отверстия для крепления ножек. Еще 2 сзади под тюльпаны и одно квадратное для usb разъема. Провозился целый день.Весь следующий день я занимался соединением плат и прокладыванием проводов внутри корпуса. Вот, что у меня вышло:

Цап принцип работы - изображение 65 - изображение 65

Цап принцип работы - изображение 66 - изображение 66

Кнопка при включении загорается белым.

Цап принцип работы - фото 67 - изображение 67

Многие бы на этом остановились, и считали бы процесс завершенным. В комментариях бы начали задавать вопросы по поводу звучания и началась бы аудиофилия чистой воды. Поэтому я считаю, что все посты про сборку усилителей, цапов и прочей аудиотехники должны заканчиваться реальными замерами характеристик с предоставлением всех графиков для объективной оценки качества двух устройств между собой. Чтобы можно было сказать, что, да это устройство лучше, а это хуже. Я крайне не приемлю словесное описание звука. Никакая теплота и воздушность не подходит. Что вот это значит вообще? Как можно судить, что это устройство выдает более теплый звук, а это мене. Я не филолог и не лингвист, я инженер. Я окончил факультет радиотехники и электроники и для меня понятны сухие цифры и графики. Никакая эмоциональная составляющая не должна влиять на оценку качества устройства. Как бы Вы не были рады и горды собой, когда собственными руками собрали свой усилитель, вы должны задать себе всего один вопрос, который я постоянно себе задаю «А не херню ли я собрал?». Как доказать, что устройство действительно хорошее? Только измерениями фактических характеристик. Поэтому дальше я прилагаю графики, сделанные с помощью программы RightMark Audio Analyzer (RMAA 6.4.2) и аудио интерфейса E-MU Tracker Pre.

График АЧХ:

Цап принцип работы - фото 68 - изображение 68

Из графика видно, что полоса пропускания абсолютно ровная и ограничивается 20 кГц. Заметна небольшая разница между левым и правым каналом. Согласно измерениям, она составляет не более 0,2 дБ.

Уровень шума:

Цап принцип работы - фотография 69 - изображение 69

Шумовая полка на ВЧ находится на уровне -141 дБ. Есть небольшие всплески, не превышающие -132 дБ в диапазоне от 1кГц до 3кГц. Так как речь идет о всем звуковом диапазоне, то уровень шума необходимо брать по наибольшему значению, что составляет менее - 120 дБ. Если брать частоту в 1 кГц, то уровень шума можно записать, как -142 дБ. Но на графике видно, что есть значения выше.

Динамический диапазон:

Цап принцип работы - фото 70 - изображение 70

Измеренное значение составляет 110дБ.

Суммарные гармонические искажения + шум:

Цап принцип работы - фотография 71 - изображение 71

Коэффициент гармоник 0,0005% - худшее значение за все измерения. Обычно 0,0004%Как видно, вторая и третья гармоники находятся на уровне примерно -114 дБ. Отсутствует полностью фоновый шум питающей сети в 50 Гц и 100Гц, а также гармоники выше 3 ей.

Интермодуляционные искажения:

Цап принцип работы - изображение 72 - изображение 72

0,0016%

Взаимное проникновение каналов в зависимости от частоты:

Цап принцип работы - изображение 73 - изображение 73

На 100Гц  -103 дБНа 1кГц  -103 дБНа 10кГц  -83 дБ

Интермодуляционные искажения для плавающего тона:

Цап принцип работы - изображение 74 - изображение 74

На 5 кГц  0,0017%На 10 кГц  0,0014%На 15 кГц  0,0020%

Естественно прилагаю полный отчет в архиве.Есть также файл сохранения, который можно загрузить в RMAA и детально изучить все графики, а также сравнить с другими устройствами.Очень надеюсь, что Вам понравился мой пост и я им заложу новую традицию - публиковать результаты измерений своих устройств.

А что по затратам на комплектующие? Устройства с такими характеристиками стоят огромные суммы в магазинах.Я всёИнтересно получилось. Где покупали платы и комплектующие???

alex-day ›Blog ›Цифро–Аналоговые Преобразователи. Основные типы и их параметры.

Цап принцип работы - фотография 75 - изображение 75

Цифро-аналоговые преобразователи (ЦАП) предназначены для создания выходной аналоговой величины, соответствующей цифровому коду, поступившему на вход преобразователя.

Простейший ЦАП можно построить на основе операционного усилителя с коммутируемыми весовыми резисторами на входе. Каждый из аналоговых ключей (коммутаторов) K0 … KN -1 может находиться в одном из двух состояний: закрытом или открытом в зависимости от значения соответствующего разряда входного цифрового слова.

Цап принцип работы - изображение 76 - изображение 76

Простейший ЦАП с весовыми резисторами на входеСопротивление резисторов соседних разрядов отличаются в 2 раза. Выходное напряжение ЦАП является функцией полного сопротивления резистивной матрицы которое в свою очередь определяется состояниями ключей, т. е.:Uвых=-Еоп*Roc/Rmгде

Цап принцип работы - фото 77 - изображение 77

Точность такого преобразователя определяется разбросом и стабильностью параметров резисторов матрицы, аналоговых ключей, ОУ. При большой разрядности ЦАП технологически очень трудно выполнить резисторы с перепадом сопротивлений в 2N -1 раза. Технологически удобно изготовлять резисторы по возможности с одинаковыми сопротивлениями. В этом случае необходимый коэффициент передачи эталонного напряжения формируется с помощью многозвеньевого делителя напряжения на основе матрицы сопротивлений типа R – 2RТакая схема имеет коэффициент использования эталонного напряжения равный 2/3 в то время как в предыдущей этот коэффициент равен 1. Однако, несмотря на этот недостаток и на большее число элементов схемы, резистивная матрица типа R – 2R имеет преимущество как более технологичная.В матрице R – 2R выходное напряжение не зависит от абсолютной величины R . Чем выше идентичность в звеньях матрицы, тем точнее осуществляется цифро-аналоговое преобразование. Резистивная цепь R – 2R изготавливается, как правило, по тонкопленочной технологии.

Цап принцип работы - изображение 78 - изображение 78

ЦАП с резистивной матрицей типа R – 2RВ рассмотренных схемах ЦАП время выполнения операции преобразования определяется быстродействием ключевых схем и переходными процессами в резистивных цепях, обусловленными наличием паразитных емкостей. Второй фактор для этих схем является основным, так как значения сопротивлений обычно выбирают довольно большими (примерно 10 и 20 кОм), что бы пренебречь погрешностями, вносимыми конечным сопротивлением электронных ключей. С этой точки зрения схема R-2R обладает более низким быстродействием, так как содержит больше паразитных емкостей и в ней используется многозвенный принцип передачи напряжения.В рассмотренных схемах ЦАП в качестве ключей используются аналоговые коммутаторы, как на биполярных, так и на полевых транзисторах. Главным требованием, предъявляемым к таким ключам, является их низкое, стабильное во времени сопротивление в открытом состоянии.

Параметры ЦАП

Характеристика преобразования (ХП). При подаче на вход цифровых двоичных комбинаций, управляющих состояниями ключей и меняющихся от 0 до, 2^N – 1 , на его выходе появится ступенчато нарастающее напряжение. Высота каждой ступени соответствует шагу квантования DUкв. На харак- теристике преобразования можно выделить две характерные точки, это начальная и конечная точки ХП, которые определяются начальным и конечным значениями входного кода. Так как DUкв определяет минимальное значение выходное напряжения аналогового сигнала DUвых min = DUкв, то при выборе его значения необходимо учитывать также шумовые факторы и погрешности усиления масштабирующих усилителей.

Цап принцип работы - изображение 79 - изображение 79

Разрядность – число двоичных разрядов входного кода (N).Диапазон выходной величины – интервал значений выходной аналоговой величины от начальной до конечной точки ХП.Относительная разрешающая способность определяется как величина обратная числу уровней квантования d0=1/(2^N-1)Абсолютная разрешающая способность – численно равна шагу квантования da=Uпш/(2^N-1)где Uпш – напряжение полной шкалы, соответствующее максимальному выходному напряжению, 2^N – 1 – количество ступеней квантования.Абсолютная погрешность преобразования dпш показывает максимальное отклонение выходного напряжения в конечной точке реальной характеристики преобразования от выходного напряжения в конечной точке идеальной характеристики преобразования

Цап принцип работы - фотография 80 - изображение 80

Погрешности преобразования ЦАПАбсолютная погрешность преобразования оценивается в процентах или долях единицы младшего разряда (ЕМР). ЕМР – среднее значение ступени квантования по всей характеристике преобразования.Интегральная нелинейность преобразования ЦАП – dлн определяет максимальное отклонение реальной ХП от идеальной и оценивается также в долях ЕМР.Дифференциальная нелинейность преобразования ЦАП – dдиф.лн численно равна максимальной разности двух соседних шагов квантования.dдиф.лн = DUкв 2 – DUкв 1Дифференциальная нелинейность также оценивается в долях ЕМР.Время установления tуст выходного напряжения или тока – интервал времени от начала изменения выходного двоичного кода от минимального до максимального значения до момента когда выходной аналоговый сигнал достигнет заданной величины.Максимальная частота преобразования fпр – наибольшая частота смены входных кодовых наборов.

Аудио ЦАП AK4495seq своими руками

Цап принцип работы - фото 81 - изображение 81

Аудио ЦАП AK4495seq своими руками

Цап принцип работы - фотография 82 - изображение 82

kak_eto_sdelano

October 10th, 2018

Сегодня будет рассказ о сборке интересного аудиоустройства.

Цап принцип работы - изображение 83 - изображение 83

Технические характеристики:Диапазон воспроизводимых частот 20Гц - 20кГц. - зависит от частоты дискретизации воспроизводимого файла.Уровень собственных шумов -110дБДинамический диапазон 110 дБКоэффициент гармонических искажений 0.0004%Взаимное проникновение каналов -105дБИнтермодуляционные искажения 0,0017%

Сегодня я готов рассказать о том, как я собираю цифро-аналоговые преобразователи (ЦАП). Тот, о котором дальше пойдет речь уже третий по счету. Первый - был для меня настоящим вызовом. Я даже сам не представлял как я справлюсь с такой задачей. Теперь же спустя несколько лет, я уже не вижу в этом особых сложностей. Поэтому, если кто-то еще так же как и я вдохновляется хорошей музыкой и кому хочется самому собрать для себя цап наивысшего качества по вполне бюджетной цене - присаживайтесь по-удобнее.

Первый в своей жизни ЦАП на микросхеме AK4495seq я собрал для своего друга, т.к. он не мог найти достойного качества по разумной цене. С тех пор все цапы я собираю на этой микросхеме. Мы вместе выбирали и сравнивали разные готовые модели цапов в интернет-магазинах и в итоге поняли, что требуемое качество совершенно не подходит по цене. В итоге было решено попробовать собрать цап самостоятельно. В итоге цапом остались довольны.

Первый вопрос, который меня волновал, это то, что понадобится какой-то драйвер для usb под windows. Написать его самостоятельно я точно не смогу. Изучив тему, я понял, что и не придется. Cегодня на рынке топовых решений существует два варианты - это относительно дешевые usb интерфейсы на микросхеме XMOS U8 и прямой его конкурент с чуть лучшими характеристиками Amanero. Для этих плат уже есть драйверы, написанные разработчиками. Для Mac OS и Linux драйверы и вовсе не нужны. Платы конвертируют сигнал от шины usb в шину I2S, по которой принимают данные все современные цапы. Все, что требуется, это соединить его по шине I2S проводами к соответствующим пинам. Обычно они подписаны на плате. Оба интерфейса 32 битные и поддерживают частоты дискретизации вплоть до фантастических 384кГц. Также они поддерживают воспроизведение DSD файлов. XMOS u8 до DSD256, а Amanero до DSD512. Музыку в таком качестве мне удалось найти всего лишь на одном сайте. И это в основном классика. Около 20 композиций на сегодняшний день.

Небольшое отступление в теорию.

Сразу хочу объяснить для чего такие заоблачные характеристики. Многие подумают, что и 44.1кГц, которые поддерживают все устройства сегодня, вполне достаточно. Обычно такие люди сразу вспоминают теорему Найквиста-Котельникова. Забывая при этом, что она сформулирована для непрерывных гармонических сигналов, которыми музыка не является. Суть теоремы состоит в том, что непрерывный сигнал с ограниченным спектром можно абсолютно точно представить набором его отдельных значений («отсчетов»), следующих с равными интервалами, при условии, что частота следования этих отсчетов, как минимум, вдвое превышает верхнюю границу спектра указанного сигнала.

То есть для цифрового представления максимальной частоты, слышимой человеком (20 кГц), нам понадобится частота дискретизации в два раза больше - 40 кГц. Для наглядности приведу фото. Но возьмем частоту не в двое, а в 4 раза меньше частоты дискретизации - 11025 кГц. Такую частоту совершенно точно слышат все люди, а не только летучие мыши. Вот так примерно выглядит аналоговый непрерывный синусоидальный сигнал с частотой в 11,025кГц на экране осциллографа

Цап принцип работы - фотография 84 - изображение 84

А вот так выглядит его цифровое представление при частоте дискретизации 44100 Гц:

Цап принцип работы - изображение 85 - изображение 85

Как видно, сохраняется только частота сигнала, но никак не его форма. Что не удивительно, т.к. на один период сигнала приходится всего 4 отчета. И это еще если частота сигнала кратна частоте дискретизации. А если взять не кратную, например 10 кГц ровно, то получится, что отчеты уже не будут приходиться на максимумы и минимумы нашего исходного сигнала и картина изменится:

Цап принцип работы - фотография 86 - изображение 86

Как можно заметить, изменяется даже амплитуду сигнала.

А вот так выглядит тот же сигнал в 11025Гц, представленный в цифровом виде с частотой дискретизации 192кГц:

Цап принцип работы - фотография 87 - изображение 87

Уже гораздо больше похоже на оригинал, т.к. отчетов на один период выходит 18 и сигнал описывается точнее. Я считаю, что этого вполне достаточно. Конечно данную проблему можно с успехом решить различного рода фильтрами и апсэмплингом, что и делается сегодня, и благодаря чему дискретизации с частотой 44100 Гц достаточно абсолютному большенству. Но этой теме можно посвятить отдельную научную статью. Надеюсь, теперь отпадет вопрос в необходимости частот дискретизации 96 кГц и192 кГц.

После небольшого отступления возвращаемся обратно.Сейчас же я собираю цап уже для себя.

Свой выбор usb интерфейса я остановил на Amanero, т.к. до этого делал на микросхеме XMOS U8, а теперь хотел узнать про второй.

Вопрос выбора микросхемы цап был решен уже тогда, когда я собирал первый вариант для своего школьного друга. Это все та же AK4495seq. Это 32 битный чип (вместе с amanero получается полностью 32 битное устройство). Максимальная частота дискретизации еще более впечатляет - 768кГц. Поддерживает воспроизведение DSD файлов 2.8МГц 5.6МГц (DSD64 и DSD128) в режиме native, без конвертации в PCM формат.

Также после микросхемы цапа должен стоять буферный усилитель выполненный по схеме активного фильтра нижних частот, для эффективной фильтрации воспроизводимого диапазона. Рекомендуемая его схема уже представлена в datasheet к цапу и выглядит следующим образом:

Цап принцип работы - фотография 88 - изображение 88

На каждый канал требуется по 3 монофогических операционных усилителя NJM5534D. Такое решение позволяет достичь заявленных производителем характеристик готового цапа.

Мне удалось найти печатную плату, выполненную по такой схеме и набор подобранных радиоэлементов к ней. Это сильно упрощает задачу.

Цап принцип работы - фотография 89 - изображение 89

Цап принцип работы - изображение 90 - изображение 90

Цап принцип работы - изображение 91 - изображение 91

Я предпочитаю всегда брать не собранные варианты, т.к. качество китайской пайки зачастую низкое, а также я получаю большее удовольствие от сборки, когда паяю сам. К тому же это позволяет еще и сэкономить, т.к. не собранные платы еще и дешевле.

Вот, к примеру, как должен вытекать припой на обратную сторону платы по ножке радиоэлемента, чтобы можно было говорить о качественной пайке, также при правильно подобранной температуре жала паяльника, пайка получается блестящей. Обязательно следует отмывать платы от флюса, даже если на нем написано, что этого допускается не делать.

Цап принцип работы - изображение 92 - изображение 92

Заранее я прикидывал компоновку плат в корпусе, не без помощи, конечно.

Цап принцип работы - фото 93 - изображение 93

На фото можно заметить уже собранный усилитель для наушников, который я хотел установить в корпус цапа, но кошак сказала, что так делают только оч маленькие дети и все равно он не помещается.

Ну что ж, кошак дело говорит. Решено было сделать так:

Цап принцип работы - изображение 94 - изображение 94

На фото стабилизатор двуполярного питания на LM317 LM337 + TL431 с возможностью регулировки выходного напряжения подмтроечными резисторами для положительного и отрицателного плеча, ниже плата цапа и нч-фильтра, usb интерфейс Amanero, 2 трансформатора отдельно для аналоговой и цифровой схемы, рядом с которыми фильтр от электромагнитных помех в питающей сети. Питание цапа реализовано на самой плате.

К моменту фотографии уже был сделан тестовый запуск.

Все платы были закреплены на стойки к металлическому дну, толщина которого позволила нарезать резьбу и закрепить платы без гаек заподлицо.

Цап принцип работы - фотография 95 - изображение 95

Цап принцип работы - изображение 96 - изображение 96

Цап принцип работы - фото 97 - изображение 97

Итого 28 отверстий с резьбой, включая 4 отверстия для крепления ножек. Еще 2 сзади под тюльпаны и одно квадратное для usb разъема. Провозился целый день.

Весь следующий день я занимался соединением плат и прокладыванием проводов внутри корпуса. Вот, что у меня вышло:

Цап принцип работы - изображение 98 - изображение 98

Цап принцип работы - изображение 99 - изображение 99

Кнопка при включении загорается белым.

Цап принцип работы - фотография 100 - изображение 100

Многие бы на этом остановились, и считали бы процесс завершенным. В комментариях бы начали задавать вопросы по поводу звучания и началась бы аудиофилия чистой воды. Поэтому я считаю, что все посты про сборку усилителей, цапов и прочей аудиотехники должны заканчиваться реальными замерами характеристик с предоставлением всех графиков для объективной оценки качества двух устройств между собой. Чтобы можно было сказать, что, да это устройство лучше, а это хуже. Я крайне не приемлю словесное описание звука. Никакая теплота и воздушность не подходит. Что вот это значит вообще? Как можно судить, что это устройство выдает более теплый звук, а это мене. Я не филолог и не лингвист, я инженер. Я окончил факультет радиотехники и электроники и для меня понятны сухие цифры и графики. Никакая эмоциональная составляющая не должна влиять на оценку качества устройства. Как бы Вы не были рады и горды собой, когда собственными руками собрали свой усилитель, вы должны задать себе всего один вопрос, который я постоянно себе задаю «А не херню ли я собрал?». Как доказать, что устройство действительно хорошее? Только измерениями фактических характеристик. Поэтому дальше я прилагаю графики, сделанные с помощью программы RightMark Audio Analyzer (RMAA 6.4.2) и аудио интерфейса E-MU Tracker Pre.

График АЧХ:

Цап принцип работы - фотография 101 - изображение 101

Из графика видно, что полоса пропускания абсолютно ровная и ограничивается 20 кГц. Заметна небольшая разница между левым и правым каналом. Согласно измерениям, она составляет не более 0,2 дБ.

Уровень шума:

Цап принцип работы - изображение 102 - изображение 102

Шумовая полка на ВЧ находится на уровне -141 дБ. Есть небольшие всплески, не превышающие -132 дБ в диапазоне от 1кГц до 3кГц. Так как речь идет о всем звуковом диапазоне, то уровень шума необходимо брать по наибольшему значению, что составляет менее - 120 дБ. Если брать частоту в 1 кГц, то уровень шума можно записать, как -142 дБ. Но на графике видно, что есть значения выше.

Динамический диапазон:

Цап принцип работы - фотография 103 - изображение 103

Измеренное значение составляет 110дБ.

Суммарные гармонические искажения + шум:

Цап принцип работы - фото 104 - изображение 104

Коэффициент гармоник 0,0005% - худшее значение за все измерения. Обычно 0,0004%

Как видно, вторая и третья гармоники находятся на уровне примерно -114 дБ. Отсутствует полностью фоновый шум питающей сети в 50 Гц и 100Гц, а также гармоники выше 3 ей.

Интермодуляционные искажения:

Цап принцип работы - фотография 105 - изображение 105

0,0016%

Взаимное проникновение каналов в зависимости от частоты:

Цап принцип работы - фотография 106 - изображение 106

На 100Гц -103 дБНа 1кГц -103 дБНа 10кГц -83 дБ

Интермодуляционные искажения для плавающего тона:

Цап принцип работы - изображение 107 - изображение 107

На 5 кГц 0,0017%На 10 кГц 0,0014%На 15 кГц 0,0020%

Источник

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану (shauey@yandex.ru) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Еще раз напомню, что посты теперь можно читать на канале в Телеграме

Цап принцип работы - фото 108 - изображение 108

и как обычно в инстаграме.    Жмите на ссылки, подписывайтесь и комментируйте, если вопросы по делу, я всегда отвечаю.

Цап принцип работы - изображение 109 - изображение 109

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Цап принцип работы - изображение 110 - изображение 110

Tags: радио

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 193)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты