Что такое емкость конденсатора?

Электрическое понятие ёмкости означает способность проводника или нескольких проводников накапливать электрический заряд. Этой важной характеристикой обладает одиночный проводник. Для него ёмкость будет составлять отношение собственного заряда к величине потенциала, при условии, что все остальные проводники теоретически не существуют (удалены в бесконечность) и потенциал любой точки пространства соответственно равен нулю.

Этой характеристикой обладают и два проводника. В этом случае ёмкость системы, представленной в качестве двухполюсника, равна отношению заряда системы к разности потенциалов двух проводников. В случае разделения пространства проводников вакуумом или диэлектриком – когда мы имеем дело с конденсатором – разность потенциалов берётся между обкладками.

Единицей измерения ёмкости в системе СИ (Международной системе единиц) выступает фарад (ранее – фарада), названный так в честь выдающегося учёного из Великобритании, внёсшего огромнейший вклад в развитие электротехники, Майкла Фарадея. В системе СГС ёмкость измеряется в сантиметрах. Ёмкостью в 1 фарад (ф) обладает конденсатор, способный создавать напряжение между обкладками в 1 вольт при заряде в 1 кулон.

Сам по себе фарад – гигантская величина ёмкости для уединённого проводника (её мог бы иметь шар из металла, размером в 13 раз превышающим Солнце). На практике нашли применение его дольные единицы: микрофарады, нанофарады и пикофарады. Они применяются для измерения ёмкостей между электродами в разнообразных приборах, а также ёмкостей кабелей и конденсаторов.

Определения

Конденсатор представляет собой двухполюсник (совокупность двух проводников, имеющих противоположно направленные, но равные по величине заряды), обладающий переменной или постоянной ёмкостью при наличии малого уровня проводимости. Его неотъемлемой функцией является возможность накопления и отдачи заряда, а также электрической энергии, существующего благодаря ему поля. В электрических цепях он играет пассивную роль.

Честь создания первых прототипов современных конденсаторов принадлежит двум независимым друг от друга исследователям:

  • Голландцу Питеру ван Мушенбруку, работавшему совместно со своим учеником Кюнеусом над созданием так называемой «лейденской банки», первый образец которой появился в 1745 году.
  • Немцу Эдварду Юргену фон Клейсту, параллельно ставшему изобретателем «медицинской банки».

Хотя надо отметить, что несколько ранее российско-германским физиком Эпинусом были созданы первые разделённые диэлектриком (непроводящим электрический ток материалом) электрические листы – фактически полноценные конденсаторы.

Сегодня столь повсеместно распространённое устройство как конденсатор представляет собой две пластины, служащие электродами (обкладками), между которыми расположен слой тончайшего диэлектрика. На практике они (пластины и диэлектрики) отличаются многослойностью, а изготавливаются в виде скрученных в параллелепипед или цилиндр чередующихся между собой лент изоляционного материала и проводника.

Плоский конденсатор

Плоский конденсатор представляет собой две параллельно расположенные пластины прямоугольной, квадратной или круглой формы, противоположно заряженные и разделённые тонким слоем диэлектрика. Формула расчёта его ёмкости выглядит следующим образом:

Здесь:

  • С – ёмкость конденсатора, ф.
  • ε – диэлектрическая проницаемость диэлектрика, речь о которой пойдёт ниже.
  • ε0 – диэлектрическая постоянная, равная 8,854185×10-12 ф/м.
  • S – площадь пластины, м2.
  • d – расстояние между пластинами, м.

Как следует из приведённой формулы, ёмкость плоского конденсатора растёт по мере увеличения площади пластин и при сокращении расстояния между ними. При этом в качестве диэлектрика лучше всего выбирать материалы с наибольшей диэлектрической проницаемостью (в идеале – дистиллированную воду). В случае использования многослойного плоского конденсатора, чередующего диэлектрик и пластины, его ёмкость вырастет в n-1 раз. Где n – количество используемых пластин.

Сферический конденсатор

Сферический конденсатор представляет собой шар, состоящий из двух концентрических обкладок, разделённых слоем сферы диэлектрика. Благодаря особенностям геометрии находящихся внутри друг друга тел, формула расчёта его ёмкости такова:

Здесь R1 и R2 – радиусы обкладок, а r2 – радиус от центра до самого края, r1 – самый малый радиус.

Цилиндрический конденсатор

Ёмкость цилиндрического конденсатора рассчитывается по следующей формуле:

Где l – длина цилиндра конденсатора, а R1 и R2 – радиусы цилиндрических обкладок.

Маркировка конденсаторов

В электротехнике конденсаторы применяются повсюду. Обычно они подразделяются (классифицируются) по виду наполняемого межэлектродное пространство диэлектрика и по методам изменения своей ёмкости. Старые (изготовленные до 1960 года) конденсаторы маркируются системой обозначения с участием только лишь букв:

  • первая буква К говорит, что это конденсатор;
  • вторая буква указывает на материал, из которого изготовлен диэлектрик (Б – бумага, К – керамика, С – слюда, Э – электролит);
  • третья показывает приемлемые условия эксплуатации или подразумевает герметичность конструкции.

Применяемая сегодня обновлённая (цифровая) система маркировки подразделяет конденсаторы по предназначению, исполнению, виду диэлектрика. Суть её сводится к следующему:

  • начальная буква К также обозначает конденсатор;
  • следующая цифра сообщает о диэлектрическом материале, буква – о целях применения;
  • далее идёт номер разработки или вариант конструкции, указываемый соответствующей буквой.

Формулы для вычисления

Электрической ёмкости в фарадах, посредством математических выражений

Ёмкость, которую может накапливать и хранить конденсатор, как потенциальную электрическую энергию – величина постоянная. Она пропорциональна заряду и обратно пропорциональна приложенному напряжению. Математическое выражение фарада выглядит так:

Где:

  • C – ёмкость конденсатора,
  • Q – заряд,
  • U – приложенное напряжение.

Из приведённого выражения следует, что, изменяя прикладываемое напряжение, можно регулировать величину самого заряда.

Единица измерения электрической ёмкости – фарад – может выражаться (рассчитываться) и через иные единицы измерения, действующие в системе СИ:

Здесь: F – фарад, C – кулон, V – вольт, A – ампер, s – секунда, J – джоуль, N – ньютон, m – метр, W – ватт, kg – килограмм, Ω – ом, Hz – герц, H – генри.

Ёмкости конденсатора в зависимости от диэлектрической проницаемости среды, заполняющей пространство между его пластинами

Диэлектрическая проницаемость среды характеризует изоляционные свойства материала. В нашем случае – изолятора, определяющего ёмкость конденсатора. Из приведённых выше формул для расчёта ёмкостей плоского, сферического и цилиндрического конденсаторов видно, что ёмкость всегда прямо пропорциональна величине проницаемости используемого диэлектрического материала – ε.

Из практических соображений при расчёте ёмкостей конденсаторов употребляется относительная диэлектрическая проницаемость, равная:

  • 3-10 для стекла;
  • 5-7 для слюды;
  • 2,5-3,5 для бумаги;
  • 1,0006 для воздуха.

Как измерить ёмкость конденсатора с помощью мультиметра?

Обычно ёмкость конденсатора указывается на его корпусе цветовым кодом или дробными единицами фарад. Однако с течением времени её величина, вследствие износа и эксплуатации, может измениться.

Для того, чтоб убедится в правильности указанной величины, можно воспользоваться мультиметром. Современные цифровые мультиметры, оснащённые функцией измерения ёмкости «Cx», способны выдавать достаточно объективные показания, анализируя кривую нарастания напряжения при заряде и разряде в конденсаторе заранее заданным током.

Выполняется данная процедура следующим образом:

  • Ножки конденсатора, соблюдая полярность, вставляются в соответствующие гнёзда.
  • Выбирается нужный диапазон измерения (подчас проблемой является конкретная для данного прибора узость измеряемых величин – это необходимо предусмотреть заранее).
  • Нужные показания считываются на табло.

Иные способы измерения

Существуют и иные способы измерения ёмкости конденсатора.

Осциллографом

С помощью осциллографа можно определить постоянную времени, то есть время заряда конденсатора на 63%. Далее разделив эту постоянную на сопротивление цепи в омах, получим искомую величину в фарадах.

Мостовыми измерителями

Здесь конденсатор включается в плечо моста, что позволяет обеспечить высокую точность измерения. Показания можно отслеживать на дисплее и по мере необходимости, пользуясь средствами связи, оперативно передавать на значительные расстояния.

С помощью тестера, не обладающего функцией замера ёмкости

В этом случае потребуется источник питания и схема с включением измеряемого конденсатора и резистором, номиналом в 1-10 кОм. Проведя с помощью тестера и секундомера замеры и сделав необходимые расчёты, можно примерно рассчитать ёмкость исследуемого конденсатора.

Кроме вышеперечисленных методов, имеется множество сделанных руками любителей и профессионалов моделей, позволяющих проводить тестирование конденсаторов с функциями определения их ёмкостей.

Заключение

Конденсаторы нашли широчайшее применение во всех направлениях электротехники и электроэнергетики благодаря целому набору функциональных возможностей:

  • фильтрации электрических сигналов;
  • способности формирования цепей обратной связи;
  • вхождения в схемы колебательных контуров;
  • возможности сглаживания пульсаций выпрямленного напряжения;
  • получения импульсного разряда значительной мощности;
  • использования в качестве элемента памяти логических устройств;
  • ограничителя величин переменного тока (балласта);
  • использования как одного из элементов времязадающих цепей;
  • компенсации реактивных мощностей и фильтрации высших гармоник;
  • применения в качестве ускорителя заряженных частиц;
  • измерителя малых перемещений;
  • косвенного измерителя физических величин: влажности, температуры, уровня среды;
  • употребления в качестве фазосдвигающего устройства;
  • использования в качестве аккумулятора электроэнергии.

О последнем пункте хочется сказать отдельно и особо. Голубой мечтой энергетиков (и не только энергетиков) является создание суперконденсатора и освоение сверхпроводимости. При всех своих достоинствах электрическая энергия обладает рядом существенных недостатков: её невозможно хранить, а передача больших мощностей на значительные расстояния обходится очень дорого.

Выходом могло бы стать создание конденсаторов огромной ёмкости – быстро заряжающихся (в отличие от химических источников тока) и длительно хранящих большие запасы электроэнергии при сравнительно небольших габаритах. Но пока что суперконденсаторы – всего лишь красивая мечта. Хотя, вполне возможно, что на путях создания молекулярно-структурированных материалов, служащих в качестве электродов и изоляции, возникнут, в конце концов, устройства, обладающие практически неограниченной электрической ёмкостью.

Работа в этом отношении ведётся на протяжении 70 с лишним лет. Перспективные разработки с уникальными данными имеются, они находят применение на практике в качестве установок, сглаживающих колебания электрического напряжения или электроэквивалентов механических инерционных устройств.

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 1960)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты