Клистрон принцип работы

КЛИСТРОН

Клистрон - элек­тро­ва­ку­ум­ный СВЧ-при­бор, ра­бо­та ко­то­ро­го ос­но­ва­на на взаи­мо­дей­ст­вии по­то­ка элек­тро­нов с элек­трическими СВЧ-по­ля­ми объ­ём­ных ре­зо­на­то­ров, груп­пи­ро­вании элек­тро­нов в сгу­ст­ки и по­сле­дую­щем пре­об­ра­зо­ва­нии ки­не­тической энер­гии элек­тро­нов в энер­гию СВЧ-ко­ле­ба­ний.

Раз­ли­ча­ют про­лёт­ные и от­ра­жа­тель­ные клис­тро­ны.

Клистрон - изображение 2

Схема многорезонаторного пролётного клистрона: 1 – электронная пушка; 2 – фокусирующий электрод; 3 – катод; 4 – входной активный резонатор; 5 – пассивные резонаторы 

Клистрон

Лекция 3. Пролетные клистроны - изображение 3

Пролётный клистрон - клистрон, в котором электроны последовательно пролетают сквозь зазоры объёмных резонаторов.

Большинство пролётных клис­тро­нов являются многорезонаторными усилительными клис­тро­нами. 

Отражательный клис­тро­н - клис­тро­н, в котором поток электронов, пройдя зазор объёмных резонаторов, попадает в тормозящее поле отражателя, отбрасывается этим полем назад и вторично проходит зазор в обратном направлении.

При первом прохождении зазора его электрическое поле СВЧ модулирует скорости электронов.

При втором прохождении электроны прибывают в зазор сформированными в сгустки.

Поле СВЧ в зазоре тормозит эти сгустки и превращает часть кинетической энергии электронов в энергию колебаний СВЧ. 

Отражательные клис­тро­ны являются самым массовым типом приборов СВЧ. Они выпускаются для работы в дециметровом, сантиметровом и миллиметровом диапазонах волн, имеют выходную мощность от 5 мвт до 5 вт, диапазон механической перестройки частоты до 10%.

Принцип действия отражательного клистрона - изображение 4

Рис. 1. Схемы конструкции пролётных клистронов: а — усилительного, б — генераторного: 1 — катод; 2 — фокусирующий цилиндр; 3 — электронный поток; 4 — входной объёмный резонатор; 5 — отверстие для ввода энергии сверхвысоких частот; 6 — зазор объёмного резонатора; 7 — пространство дрейфа; 8 — выходной объёмный резонатор; 9 — отверстие для вывода энергии сверхвысоких частот; 10 — коллектор, принимающий электронный поток; 11 — промежуточные объёмные резонаторы; 12 — источник постоянного анодного напряжения; 13 — источник напряжения подогрева катода; 14 — первый объёмный резонатор; 15 — щель связи, через которую часть энергии сверхвысоких частот проходит из второго резонатора в первый; 16 — второй объёмный резонатор.

НАЗНАЧЕНИЕ, УСТРОЙСТВО, ПРИНЦИП ДЕЙСТВИЯ - фотография 5

Рис. 2. Схема конструкции отражательного клистрона: 1 — катод; 2 — фокусирующий цилиндр; 3 — электронный поток; 4 — ускоряющая сетка; 5 — объёмный резонатор; 6 — зазор объёмного резонатора; 7 — отражатель; 8 — вторая сетка резонатора; 9 — первая сетка резонатора; 10 — вакуумноплотное керамическое окно вывода энергии сверхвысоких частот из объёмного резонатора; 11 — источник напряжения резонатора клистрона; 12 — источник напряжения подогрева катода; 13 — источник напряжения отражателя

Принцип работы кукла против толпы. - фото 6

Рис. 3. Зависимость частоты и выходной мощности отражательного клистрона от напряжения на отражателе: А — ширина зоны генерации; Б — ширина зоны генерации по уровню половинной мощности; f1 — частота колебаний в центре зоны; Δf — отклонение частоты от f1; В — диапазон электронной настройки по уровню половинной мощности.

Клистрон принцип работы - изображение 7

Рис. 4. Способы механической перестройки частоты отражательного клистрона: а — прогибом мембраны, б — перемещением поршня съёмной части объёмного резонатора, в — перемещением штыря объёмного резонатора, находящегося вне вакуума; 1 — мембрана, прогибом которой меняют зазор объёмного резонатора (увеличение зазора увеличивает частоту колебаний); 2 — края металлических дисков клистрона, к которым присоединяют съёмную часть объёмного резонатора; 3 — съёмная часть объёмного резонатора; 4 — поршень объёмного резонатора (при опускании поршня длина объёмного резонатора уменьшается и частота генерируемых колебаний увеличивается); 5 — керамическое вакуумноплотное окно связи между объёмными резонаторами; 6 — штырь (подъём штыря увеличивает зазор объёмного резонатора и частоту колебаний); 7 — отверстие для вывода энергии сверхвысоких частот.

Принцип действия отражательного клистрона

Клистрон принцип работы - фото 13

В постоянном ускоряющем поде анода электроны от катода движутся в сторону резонатора, имеющего вид тела вращения. В центральной части его стенки, выполненные из металлических сеток, прозрачных дня электронов, сближаются, образуя узкий зазор.

В установившемся режиме в резонаторе существуют высокочастотные колебания, поле которых между сетками зазора направлено практически вдоль оси потока электронов. Под действием этого поля электроны, пролетающие через зазор, попеременно ускоряются или тормозятся, и лишь те, что проходят зазор в момент смены знака поля, продолжают путь с прежней скоростью (невозмущенные электроны). Таким образом, в зазоре происходит модуляция скорости электронов.

Толщина зазора мала, а, следовательно, мало и время пролета электронов в зазоре, напряжение между сетками зазора также невелико. Все это позволяет считать, что плотность электронного потока на выходе из зазора практически не меняется. В таком виде электронный поток поступает в постоянное тормозящее электрическое поле между резонатором и отражателем. Электроны, двигаясь к отражателю, тормозятся вплоть до остановки (в окрестности точки 5 рис.76.), поворачивают обратно и вновь пролетают через зазор. При этом ускоренные электроны ближе подлетают к отражателю и затрачивают на весь путь в оба конца больше времени, чем замедленные.

Таким образом, можно так подобрать условия движения электронов (в первую очередь - напряжение на отражателе), чтобы ускоренные электроны, раньше вышедшие из зазора, и замедленные, вышедшие позже, вернулись в зазор одновременно.

Клистрон принцип работы - изображение 14

Рис 8

Этот процесс поясняется диаграммой на рис. 8, где z = 0 и z = D - плоскости зазора и отражателя, а точки θ1, θ2, θ3 изображают моменты прохождения через зазор ускоренного, невозмущенного и замедленного электронов, идущих по траекториям а, б и в.

Этот процесс приводит к тому, что возвращающийся в зазор поток представляет последовательность сгустков и разрежений, т.е. происходит группировка электронов. На рис.8 видно, что центр сгустка совпадает с положением невозмущениого электрона.

Если сгусток встретит в зазоре тормозящее ВЧ поле (например, точка θ6 на рис.8), то он передаст ему часть своей кинетической энергии, которая послужит поддержанию установившихся в резонаторе колебаний, т.е. клистрон будет генерировать. Начальные колебания в резонаторе, необходимые для модуляции электронов по скорости, возбуждаются за счет флюктуаций электронного потока (дробовой эффект).

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 906)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты