Принцип работы генератора постоянного тока

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1).

По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Устройство и принцип работы - фото 2

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinwt; e2 = -Blvsinwt; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, wt – угол, под которым рамка пересекает магнитный поток.  

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinwt, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Классификация - изображение 3

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Технические характеристики генератора постоянного тока - фото 4

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей. Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Применение - фотография 5

Рис. 4. Двигатель постоянного тока

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке. Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные  показатели при оптимальных оборотах вращения якоря. Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока. На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря.

Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом. Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5).  Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Видео по теме - фотография 6

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6).  Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Принцип работы генератора. Принцип работы генератора постоянного тока - изображение 7

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Генератор постоянного тока - фото 8

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа. В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Генератор переменного тока - изображение 9

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов. В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах. Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

ЭДС

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

КПД

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P. На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок. На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением. Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

 

Основы работы устройства

Более сложные схемы генераторов - изображение 22

Сам принцип заключается в том, что если в магнитном поле перемещается проводник (при этом его движения должно быть перпендикулярным магнитному потоку, то есть пересекать его), либо же сам постоянный магнит смещается относительно проводника, то внутри проводника возникает ЭДС (электродвижущая сила) индукции.

Использование электромагнитов - фото 23

Принцип действия генераторов постоянного тока

Если при этом проводник включить в замкнутую цепь, то по ней потечет ток, называемый индуктивным. Опты установили, что величина этой силы изменяется в прямой зависимости от длины проводника, скорости его движения и величины индукции магнитного поля. При этом важно понимать, что ЭДС возникает только в случае пересечения  магнитного поля, а не движения вдоль него.

Конструкция, принцип действия генераторов постоянного тока - фото 24

Правило правой руки

Вспоминайте курс физики, а именно, правило правой руки, когда большой палец указывает направление движения проводника, если в ладонь входят силовые линии магнитного поля. При этом остальные вытянутые четыре пальца укажут вам направление действия ЭДС – именно в этом направлении потечет ток в перемещаемом проводнике.

Простейший генератор

Устройство автомобильного генератора и его проверка - изображение 25

Принцип действия генератора на постоянном токе

Итак, на картинке выше показано следующее:

  • Проводник изогнут в виде прямоугольной рамки и установлен на вращающуюся ось;
  • Он помещен в магнитное поле постоянного магнита (полюса обозначены соответствующими буквами и цветами);
  • Концы проводника соединяются с разбитым на два полукольца полым цилиндром – обе части изолированы друг от друга;
  • В контакте с полукольцами находятся щетки (контактные пластины) и при движении они скользят по цилиндру;
  • Кольцо из полуколец называется коллектором, а отдельные его части (полукольца) – пластинами (ламелями) коллектора;
  • Расположение щеток устроено таким образом, чтобы они менялись полукольцами при вращении рамки как раз в тот момент, когда ЭДС на обеих сторонах рамки будет равна нулю – этот момент будет соответствовать горизонтальному положению рамки.
  • Коллектор выпрямляет переменную ЭДС и во внешней цепи создается движение постоянного тока.

В этом можно убедиться, присоединив к контактным пластинам измерительный прибор (амперметр).

Углубленный анализ

Все вроде бы понятно, но не совсем! Давайте разберем принцип действия и характеристики генераторов постоянного тока более подробно.

Назначение и принцип работы генераторов постоянного тока - фото 26

Схема работы генератора

Для лучшей ориентации введем некоторые условные обозначения важных переменных и постоянных: t – время; Е – ЭДС; А и Б – стороны рамки.

  • Итак, нужно сразу понять, что ЭДС, возникающий в стороне рамки А, всегда будет направлена в противоположном направлении второму ЭДС, которое индуцируется в половине рамки Б. Данное утверждение очень легко проверить, воспользовавшись описанным выше правилом правой руки.
  • Общая Е будет равна двум сложенным ЭДС, возникающим в половинках рамки, и что самое интересное, эта величина будет постоянно изменяться в зависимости от положения лопастей.
  • Наибольшая величина ЭДС будет тогда, когда рамка будет находиться в вертикальном положении (на рисунке это положения б и г). Именно в этот момент проводник пересекает большее число силовых линий.
  • В горизонтальном же положении лопасти рамки будут фактически скользить вдоль этих самых линий и ЭДС индуцироваться не будет (положения а, в и д).
  • Во время движения стороны рамки Б к южному полюсу (момент старта — от северного полюса) магнита, ток в ней будет двигаться в нашем направлении, применительно к картинке выше. Данный ток будет проходить от полукольца и щетки 2, через измерительный прибор, в сторону другой щетки и части рамки А. В ней же, тоже индуцируется ток, но уже в противоположном направлении, то есть от нас.
  • Наивысшего значения ЭДС достигает тогда, когда стороны рамки находятся точно напротив полюсов магнита. Продолжая движение, ЭДС начинает убывать, пока не станет равной нулю, спустя четверть оборота. Именно в этот момент и происходит смена местами щеток.

Генератор постоянного тока. - фото 27

График изменения ЭДС при вращении рамки

  • Из-за постоянно смены щеток получается так, что за время одного полуоборота рамки, каждая контактная пластина коллектора соприкасается только с одной из щеток, и ток проходил только в одном направлении от щетки 2 к щетке 1. Давайте посмотрим, что произойдет дальше, если продолжить вращение.
  • ЭДС начинает снова расти от нуля к пику, так как снова начинается пересечение силовых линий магнитного поля, но при этом направление Е будет противоположным, то есть на части А, оно будет таким же, что ранее на Б, и наоборот. Фактически происходит зеркальная ситуация. И, казалось бы, ток должен начать двигаться в обратном направлении и стать переменным, но не забываем, что у нас в момент падения ЭДС до нуля, щетки стали касаться других полуколец коллектора, ведь он вращается вместе с рамкой.
  • То есть полукольцо, которое соединено с частью рамки А теперь касается щетки 2, а это означает только одно, ток во внешней цепи будет течь в том же направлении, что и ранее.

Схема, особенности, принцип действия и устройство генератора постоянного тока - фото 28

На фото — ротор генератора

  • В этом и заключается выпрямляющая функция коллектора. Именно благодаря ему ток в цепи протекает только в одном направлении.
  • Через полуоборот щетки снова меняют полукольца, и весь процесс повторяется снова, и так по бесконечному циклу, пока агрегат запущен и функционален. Главное при этом – обеспечить вращение рамки за счет какой-то силы.

Более сложные схемы генераторов

Несмотря на то, что ток протекает только в одном направлении, и поэтому называется громко постоянным, постоянно изменяется его величина, из-за чего подобные схемы практически неприменимы на практике.

Рассмотрим строение более сложных генераторов, которые позволяют получить ток с меньшей пульсацией.

Немного истории - изображение 29

Двухвитковый генератор

  • Представим такую конструкцию генератора, в которой перпендикулярно друг другу расположены две рамки, соединенные в свою очередь с коллектором, который теперь сделан не из полу, а четвертьколец.
  • При вращении рамок или витков, в них также как и в предыдущем случае возникает ЭДС. Однако максимальное и минимальное значение «Е» теперь достигается не через пол оборота всей рамки, а через четверть, то есть поворот одного витка на 90 градусов.
  • На представленном выше рисунке хорошо видно, что через сторону витка 1, ровно, как и через сторону 3 (считаем в примере по часовой стрелке) протекает максимальный ток, тогда как на частях 2 и 4 ЭДС будет равна нулю, так как эти проводники скользят вдоль силовых линий.
  • Соответственно конструкция всего генератора делается таким образом, чтобы именно в этот момент щетки касались контактных пластин коллектора 1 и 3.
  • Представим вращение генератора. При этом значение ЭДС на витке 1 начинает убывать, тогда как на 2, наоборот, возрастать. Когда будет совершена 1\8 полного оборота, Е1 будет минимальна, но она не будет соответствовать нулю, так как проводник до сих пор при движении  пересекает силовые линии.
  • Именно в этот момент и происходит перемена щеток на противоположные, и ЭДС начинает снова расти, так и не упав до нуля. Теперь ток начинает течь по витку, постепенно возрастая до своего максимума. Спустя четверть оборота снова происходит смена щеток, и так далее. Подробнее понять изменившиеся величины ЭДС можно из следующего графика.

Сила движения электричества - фото 30

Пульсации ЭДС на четырехвитковом генераторе

Получается, что щетки постоянно соединены с «активными проводниками», в которых ЭДС постоянно колеблется от Еmin до Еmax.

Во внешней цепи при этом ничего не меняется, из-за разбитого на четыре части коллектора. Ток продолжает течь все в том же направлении от щетки 2 к щетке 1. Он, как и прежде, будет пульсировать, и пульсации станут происходить в два раза чаще, однако разница максимальных и минимальных величин ЭДС будет значительно меньше, чем в предыдущем случае.

Идя дальше по этому принципу, и увеличивая количество вращающихся витков и коллекторных пластин можно добиться минимальной пульсации постоянного тока, то есть он действительно станет практически постоянным.

Интересно знать! Например, при количестве коллекторных пластин в 20 штук, колебание ЭДС не превысит 1%, что считается отличным показателем.

Продолжаем усложнять схему

Рассматривая предложенные схемы генераторов, не сложно догадаться, что хоть увеличенное количество витков и уменьшает пульсации, сам генератор становится все менее эффективным. Так как фактически щетки одномоментно контактируют только с одной рамкой, когда другие остаются неиспользуемыми. ЭДС одного витка невелика, поэтому и мощность генератора будет невысокой.

Чтобы использовать весь потенциал генератора, витки соединяют друг с другом последовательно по определенной схеме, а количество коллекторных пластин уменьшают до числа витков обмотки.

К каждой коллекторной пластине будет подходить начало одного витка и конец другого. При этом витки представляют собой источники тока, соединенные последовательно, и все вместе это называется обмотка якоря или ротора генератора. При таком соединении сумма ЭДС будет равна индуктируемым значениям в витках, включенных между щетками.

При этом количество витков делается достаточно большим, чтобы можно было получить требуемую мощность генератора. Именно по этой причине, особо мощные генераторы, например, от тепловозов, имеют очень большое количество пластин.

Использование электромагнитов

Что такое электрический генератор? - изображение 31

Автомобильный генератор постоянного тока

Все, что мы рассматривали до этого, было генераторами постоянного тока на постоянных магнитах. Их схема и инструкция по сборке достаточно проста, однако на практике они практически не применяются в виду того, что сделать мощный прибор таким способом не получится, ведь постоянные магниты не могут выдать достаточно мощный поток силовых линий. А из-за того, что пространство между полюсами фактически создает зону сопротивления магнитному потоку, его мощность еще больше ослабляется.

В самых мощных генераторах устанавливаются электрические магниты, способные выдавать нужную мощность, а для уменьшения эффекта сопротивления витки обмотки размещают так, чтобы они заполняли все пространство между полюсами. Установлены они на стальном цилиндре, который и называется якорем.

Схема работы элементарного генератора - изображение 32

На этом рисунке видно, как выглядит якорь электрического генератора

Итак, место постоянного магнита занимает обмотка возбуждения, расположенная на сердечниках главных полюсов. Когда по обмотке проходит электрический ток создается достаточно сильное магнитное поле, называемое полем главных полюсов.

Если внешняя цепь разомкнута, положение этих полюсов будет соответствовать оси, проходящей вертикально. На картинке выше вы четко можете увидеть данные сердечники и представить нахождение полюсов.

Прежде чем описать принцип действия такого магнита, давайте разберемся, что такое физическая и геометрическая нейтрали.

Принцип действия и устройство генератора постоянного тока - изображение 33

Схема взаимодействия магнитных полей – реакция якоря

  1. Посмотрите на представленный рисунок, пункт «а». На нем можно увидеть перпендикулярную линию полюсам, проведенную через центр якоря. Обозначена она как «О1-О1». Это и есть геометрическая нейтраль.
  2. На этом же рисунке можно разглядеть линию n-n, которая на первый взгляд своим положением полностью совпадает с предыдущей, однако, это только в неактивном состоянии генератора. На самом деле, физическая нейтраль – это условная линия, разделяющая области влияния северного и южного полюсов магнита, и забежав вперед, вы можете увидеть, что она смещается. Давайте разбираться, почему.

Итак:

Типы генераторов, вырабатывающих постоянное электричество - фото 34

Более понятная схема без условных обозначений

  • Проводник обмотки, пересекающий физическую нейтраль, не будет индуцировать ЭДС, по той причине, что он скользит вдоль силовых линий, а не пересекает их.
  • При замкнутой внешней цепи ток начинает течь и по обмотке якоря. Как и обмотка возбуждения, в этот момент якорь станет мощным электромагнитом. По этой причине помимо магнитного поля главных полюсов во взаимодействие вступает поле якоря.
  • Направление его силовых линий будет перпендикулярным потоку главных полюсов. Из-за этого оба поля как бы накладываются друг на друга и создают результирующее поле. Взаимодействие двух полей и направление вы можете увидеть на том же рисунке, в пункте «в».
  • Как видно, поле смещается к вращающемуся якорю, туда же устремляется и физическая нейтраль, занимая положение n1-n Данное взаимодействие называется реакцией якоря. На второй схеме угол смещения магнитных линий обозначен как γ.
  • Описанное явление реакции якоря для генератора не несет ничего положительного. Щетки, которые на предыдущей схеме показаны как М-М, устанавливаются всегда по направлению физической нейтрали, то есть их положение смещается относительно геометрической нейтрали на угол γ. Если этого не сделать, то между щетками и коллектором будет наблюдаться сильное искрение, что ведет к быстрому износу двух этих деталей генератора.

Принцип работы и устройство генератора из электродвигателя - фото 35

Цена перегрева ламелей коллектора – их отслоение, что фактически означает полную неремонтопригодность детали

  • Чем больше будет ток на якоре, тем сильнее будет проявляться его реакция и большим будет смещение физической нейтрали. Также стоит понимать, что сильная реакция якоря приводит к уменьшению индуцируемой ЭДС.
  • Чтобы нейтрализовать влияние на работу генератора этого фактора, между основными полюсами обмотки возбуждения устанавливаются дополнительные, а в наконечники главных полюсов закладывается дополнительная, компенсационная обмотка.

Где нашел применение источник постоянного тока? - изображение 36

Генератор с добавочными полюсами

  • Дополнительные полюса размещаются таким образом, чтобы магнитное поле от них было направлено навстречу полю якоря, чтобы его нейтрализовать. Однако данное влияние на работу генератора в целом – не единственное.
  • Мы помним, что при прохождении через нейтраль направление тока в витке обмотки очень быстро сменяется на противоположное. При этом на нейтрали данный виток замкнут щеткой накоротко.

Нужно знать! Такой виток называется коммутирующим, то есть переменным.

  • В этих витках, из-за резкой перемены направления тока, образуется довольно большая ЭДС от взаимной индукции и самоиндукции. Эта «Е» называется реактивной.
  • В дополнение эта ЭДС будет усилена действием магнитного потока якоря, который витки в это время пересекают. Прямым результатом воздействия реактивной ЭДС будет повышенное искрение щеток.
  • Для нейтрализации реактивной ЭДС служат те же добавочные полюса. Они рассчитываются так, чтобы мощность их поля была несколько выше, чем у якоря, из-за чего в коммутирующих секциях будет индуцироваться дополнительная ЭДС, с направлением противоположным реактивной, что приводит к ее гашению и искрение прекращается.

Заключение - фотография 37

Такое искрение говорит о неправильной работе электродвигателя

Следует также добавить, что сила магнитного поля ротора напрямую зависит от тока генератора, то есть нагрузки на него. Отсюда можно понять, что должно пропорционально изменяться поле и добавочных полюсов, для чего обмотку этих деталей с обмоткой якоря включат последовательно.

Компенсационная обмотка главных полюсов, о которой мы говорили выше, призвана также улучшить распределение магнитного потока, однако из-за возрастающей сложности схемы электрического генератора применяется редко.

Поэтому при возможности добиться от машины нормальной работы без компенсационной обмотки, ее не применяют, оставляя этот элемент для самых мощных агрегатов.

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос:
Чтобы проголосовать, кликните на нужный вариант ответа.