Принцип работы монитора

Жидкокристаллический дисплей (ЖКД) представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом. Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек.

Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения. Также он является одной из причин успеха портативных компьютеров – иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости.

Принцип работы ЖК-монитора

Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.

Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).

Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана – крученном нематическом – направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются.

Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.

Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается.

В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.

Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение - являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.

Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).

Принцип работы мониторов - изображение 21

Мультиплексорный экран

Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.

Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).

Цветные экраны

В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

Устройство и принцип работы монитора - изображение 22

Пассивная матрица

Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.

Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.

Активные матричные технологии

В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.

Что такое ЖК монитор – дополнение цифровым технологиям - фото 23

Скрученный нематик (TN)

TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.

3LCD-технология

Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. – и в проекционных телевизорах. Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.

IPS-технология

Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного вида ЖК-монитора в ноутбуках.

На что способен жидкий кристалл? - изображение 24

Экраны нулевой мощности

Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений – «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.

Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.

Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.

Контроль качества

ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными – 16.

Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина – только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.

ЖК матрицы: в поисках идеальной технологии - фото 25

 

Основные характеристики монитора. - изображение 28

Мультиплексорный экран

Мультиплексорный экран имеет устройство, которое называют мультиплексором. Это устройство обеспечивает передачу поступающей цифровой передачи в нужном направлении. Оно имеет несколько входов, через которые подается сигнал и один выход, к которому этот сигнал и направляется. Мультиплексор может разделять поток разнообразными способами:

  • по частотным характеристикам – данные по потокам поступают одновременно и не смешиваются между собой, но они имеют разные частоты;
  • потоки направляются в различное время – между отправками данных делаются небольшие паузы и устройство считывают данные за то время, пока другой поток к нему не поступил;
  • кодирование – каждый поступающий поток кодируется и вместе с другими направляется в устройство.

Мультиплексор может делать запись изображения с любого источника видеосигнала, позволяет просматривать записи, которые были сделаны заранее, а также может вести видеопередачу в реальном времени. На таких экранах можно просматривать одновременно несколько каналов, позволяет сделать стоп-кадр и увеличить изображение нужного фрагмента, дает возможность последовательно переключать видеозапись между разными объектами, а также на таких экран есть встроенный календарь и часы.

Принципы работы мониторов на электронно-лучевой трубке и ЖК-мониторов, их сравнительная характеристика - фото 29

Цветные мониторы

Для получения цветной картинки на LCD – экране хорошего качества нужно сделать так, чтобы свет исходил из задней панели экрана. Чтобы получить цветное изображение используется три цвета: красный, синий и зеленый. В ЖК мониторе установлен фильтр, который не пропускает все остальные спектры светового потока. Комбинация этих цветов в каждом пикселе монитора позволяет выводить на экран нужное нам цветное изображение. Для повышения его качества применяют современные технологии, такие как: IPS и TFT. IPS является разработкой, способной дать отличное качество изображению.

Справка! При управлении пикселя на мониторе в этом случае он дает большой угол обзора, но время, нужное для отклика, здесь немного дольше чем в TFT. TFT — это сокращение от Thin Film Transistor, что в переводе означает тонкопленочный транзистор. Он может управлять каждым пикселем монитора.

Мониторы: назначение, классификация (стр. 1 из 5) - фото 30

Пассивная матрица

Пассивные матрицы имеют большую емкость электрического напряжения. Поэтому мгновенно обрабатывать и отображать нужную картинку, а также ее обновлять она может чуть медленнее. Этот вид матрицы, если кратко, получается, когда происходит совмещение слоев вертикальных и горизонтальных полос. Электричество ток сначала поступает на вертикальную полосу, а затем на горизонтальную, далее происходит указание нужных координат. Когда полоски пересекаются между собой, кристаллы меняют свои структурные свойства. И на мониторе, в месте, которое соответствует этим координатам, образуется точка. В зависимости от действующей силы тока полоски проводят поток света в той или иной степени, а в цветных дисплеях происходит поляризация светового спектра. Принцип такой матрицы используется в технологии STN. Это сокращение от Super Twisted Nematic.

Основной ее принцип заключен в том, что данные для картинки формируется последовательно, а именно строка за строкой, за счет подвода напряжения  к отдельным ячейкам экрана, при этом оно их делает непрозрачными.

Принцип работы монитора - фото 31

Принцип работы мониторов

Принцип работы монитора - фото 32

Для формирования растра (рис. 4.1) в мониторе используются специальные сигналы. В цикле сканирования луч движется по зигзагообразной траектории от левого верхнего угла до правого нижнего. Прямой ход луча по горизонтали осуществляется сигналом строчной (горизонтальнойН. Sync) развертки, а по вертикали — кадровой (вертикальной - - V. Sync) развертки. Перевод луча из крайней правой точки строки в крайнюю левую точку следующей строки (обратный ход луча по горизонтали) и из крайней правой позиции последней строки экрана в крайнюю левую позицию первой строки (обратный ход луча по вертикали) происходит с помощью специальных сигналов обратного хода.

Принцип работы монитора - фотография 33

Рис 14.1. Формирование растра на экране монитора.

Таким образом, наиболее важными для монитора являются следующие параметры: частота вертикальной (кадровой) развертки, частота горизонтальной (строчной) развертки, а при работе с высокими разрешениями важна также ширина полосы пропускания видеотракта.

Описанный выше способ формирования изображения применяется и в телевизорах. Здесь частота обновления изображения (частота кадров) составляет 25 Гц. С первого взгляда кажется, что это очень низкая частота. Однако в телевидении для сокращения полосы частот спектра телевизионного сигнала применяется чересстрочная развертка, т. е. полный растр получается за два приема. Сначала за время, равное 1/50 с, передаются (воспроизводятся) только нечетные строки: 1, 3, 5 и т. д. Эта часть растра называется полем нечетных строк или нечетным полукадром. Затем развертывающий электронный луч быстро переводится от нижнего края экрана вверх и попадает в начало 2-ой (четной) строки. Далее луч прорисовывает все четные строки: 2, 4, 6 и т. д. Так формируется поле четных строк или четный полукадр. Если наложить оба полукадра друг на друга, то получится полный растр изображения.

Данный способ формирования изображения как в мониторах, так и в телевизорах оказался возможным благодаря двум свойствам, а точнее недостаткам, нашего зрения:

Инерционность восприятия световых раздражений, т. е. возникновение и прекращение фотохимических реакций в сетчатке глаза после начала и окончания воздействия импульса света происходит не мгновенно, а с задержкой, характеризующей эту инерционность. Для обычно встречающихся условий наблюдения время возникновения зрительного ощущения составляет около 0,1 с. Время сохранения светового возбуждения составляет 0,4—1,0 с после окончания действия светового раздражителя. Благодаря такому свойству зрения оказалось, возможным производить поэлементную развертку изображения от строки к строке и от одного полукадра к другому (при чересстрочном способе формирования изображения), т. е. изображение представляется в виде быстро сменяющейся последовательности строк и кадров.

Ограниченная разрешающая способность по перемещениям. Это свойство учитывается при отображении движущихся предметов на экране монитора или телевизора. Для того чтобы движения казались плавными, каждое изменение положения предметов должно быть передано небольшими "порциями", т. е. различия в картинках должны быть достаточно малыми (как в мультипликации). Движение передается путем покадрового воспроизведения отдельных мало отличающихся друг от друга фаз движения.

Принцип формирования растра у цветного монитора такой же, как и у монохромного. Однако в основу способа формирования цветного изображения положены другие важнейшие свойства цветового зрения:

Трехкомпонентность цветового восприятия. Это означает, что все цвета могут быть получены путем сложения (смешения) трех световых потоков, например красного, синего и зеленого, что позволило в цветных телевизорах и мониторах использовать метод аддитивного смешения цветов. Данный метод можно проиллюстрировать путем одновременной непрерывной проекции на экран изображений трех основных цветов при условии перекрывания ими одной и той же поверхности экрана (рис. 4.2).

Принцип работы монитора - изображение 34

Рис 4.2. Модель аддитивного смешения цветов.

В соответствии с теорией трехкомпонентного цветовосприятия, используя смешение трех основных цветов, оказалось возможным получить требуемую гамму цветовых оттенков. При смешении в определенной пропорции основных цветов — красного, синего и зеленого — получаются цвета, приведенные на рис. 14.2.

Пространственное усреднение цвета. Если на цветном изображении имеются близко расположенные цветные детали, то с большого расстояния мы не различаем цвета отдельных деталей. Вся группа будет окрашена в один цвет в соответствии с законами смешения цветов. Это свойство зрения позволяет в электронно-лучевой трубке монитора формировать цвет одного элемента изображения из трех цветов расположенных рядом люминофорных зерен.

В соответствии с особенностями человеческого зрения, в ЭЛТ цветного монитора имеются три электронные пушки с отдельными схемами управления, а на внутреннюю поверхность экрана нанесен люминофор трех основных цветов: красный, синий и зеленый (рис. 4.3, 4.4). Чтобы каждая пушка "стреляла" только по своим пятнам люминофора, в каждом цветном кинескопе имеется специальная цветоделительная маска.

Принцип работы монитора - изображение 35

Рис 4.3. Схема размещения пикселов на экране монитора

Принцип работы монитора - фото 36

Рис. 4.4. Полная модель образования цветов на экране монитора.

В зависимости от расположения электронных пушек и конструкции цветоделительной маски различают ЭЛТ четырех типов, используемых в современных мониторах:

· ЭЛТ с теневой маской (Shadow mask) и дельтаобразным расположением электронных пушек — наиболее распространенные ЭЛТ (рис. 14.5, а).

· ЭЛТ с улучшенной теневой маской (EDP — Enhanced Dot Pitch) и планарным расположением электронных пушек, обеспечивающие повышенное разрешение (такими ЭЛТ оснащены мониторы фирмы Hitachi) (рис. 14.5, б).

· ЭЛТ со щелевой маской (Slot mask) — этот тип ЭЛТ, широко используемый в телевизорах, применяется в мониторах фирмы NEC и носит название Cromaclear (рис. 14.5, в).

· ЭЛТ с апертурной решеткой (Aperture grill, AG), к которым относятся ЭЛТ типа Trinitron фирмы Sony, DiamondTron фирмы Mitsubishi и SonicTron фирмы ViewSonic (рис. 14.5, г).

 
  Принцип работы монитора - изображение 37

Рис. 4.5. Типы цветоделительной маски.

Теневая маска представляет собой металлическую пластину из специального материала — инвара с системой отверстий, соответствующих точкам люминофора, нанесенным на внутреннюю поверхность кинескопа (рис. 14.6). Очень низкий коэффициент линейного расширения инвара обеспечивает стабильность формы теневой маски при ее разогреве за счет электронной бомбардировки.

Апертурная решетка образована системой щелей, выполняющих ту же функцию, что и отверстия в теневой маске

Принцип работы монитора - фото 38

Рис. 4.6. Конструкция электронно-лучевой трубки с теневой маской.

1.3. Характеристики ЭЛТ-мониторов.

ЭЛТ-мониторы имеют следующие основные характеристики.

Диагональ экрана монитора — расстояние между левым нижним и правым верхним углом экрана, измеряемое в дюймах. Размер видимой пользователю области экрана обычно несколько меньше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагонали, при этом видимый размер обычно обозначается в скобках или с пометкой «Viewable size», но иногда указывается только один размер — размер диагонали трубки. В качестве стандарта для ПК выделились мониторы с диагональю 15", что примерно соответствует 36—39 см диагонали видимой области. Для работы в Windows желательно иметь монитор размером, по крайней мере, 17". Для профессиональной работы с настольными издательскими системами (НИС) и системами автоматизированного проектирования (САПР) лучше использовать монитор размером 20" или 21".

Размер зерна экрана определяет расстояние между ближайшими отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения. Все мониторы с зерном более 0,28 мм относятся к категории грубых и стоят дешевле. Лучшие мониторы имеют зерно 0,24 мм, достигая 0,2 мм у самых дорогостоящих моделей.

Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали. Мониторы с диагональю экрана 19" поддерживают разрешение до 1920 х 14400 и выше.

Тип электронно-лучевой трубки следует принимать во внимание при выборе монитора. Наиболее предпочтительны такие типы кинескопов, как Black Trinitron, Black Matrix или Black Planar. Мониторы этих типов имеют особое люминофорное покрытие.

Потребляемая мощность монитора указывается в его технических характеристиках. У мониторов 14" потребляемая мощность не должна превышать 60 Вт.

Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позволяет наблюдать на экране монитора только изображение, формируемое компьютером, и не утомлять глаза наблюдением отраженных объектов. Существует несколько способов получения антибликовой (не отражающей) поверхности. Самый дешевый из них — протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко, качество изображения низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализован фирмами Hitachi и Samsung. Антистатическое покрытие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.

Защитный экран (фильтр) должен быть непременным атрибутом ЭЛТ-монитора, поскольку медицинские исследования показали, что излучение, содержащее лучи в широком диапазоне (рентгеновское, инфракрасное и радиоизлучение), а также электростатические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.

По технологии изготовления защитные фильтры бывают: сеточные, пленочные и стеклянные. Фильтры могут крепиться к передней стенке монитора, навешиваться на верхний край, вставляться в специальный желобок вокруг экрана или надеваться на монитор.

Сеточные фильтры практически не защищают от электромагнитного излучения и статического электричества и несколько ухудшают контрастность изображения. Однако эти фильтры неплохо ослабляют блики от внешнего освещения, что немаловажно при длительной работе с компьютером.

Пленочные фильтры также не защищают от статического электричества, но значительно повышают контрастность изображения, практически полностью поглощают ультрафиолетовое излучение и снижают уровень рентгеновского излучения. Поляризационные пленочные фильтры, например фирмы Polaroid, способны поворачивать плоскость поляризации отраженного света и подавлять возникновение бликов.

Стеклянные фильтры производятся в нескольких модификациях. Простые стеклянные фильтры снимают статический заряд, ослабляют низкочастотные электромагнитные поля, снижают интенсивность ультрафиолетового излучения и повышают контрастность изображения. Стеклянные фильтры категории «полная защита» обладают наибольшей совокупностью защитных свойств: практически не дают бликов, повышают контрастность изображения в полтора-два раза, устраняют электростатическое поле и ультрафиолетовое излучение, значительно снижают низкочастотное магнитное (менее 1000 Гц) и рентгеновское излучение. Эти фильтры изготавливаются из специального стекла.

Безопасность монитора для человека регламентируется стандартами ТСО: ТСО 92, ТСО 95, ТСО 99, предложенными Шведской конфедерацией профсоюзов. ТСО 92, выпущенный в 1992 г., определяет параметры электромагнитного излучения, дает определенную гарантию противопожарной безопасности, обеспечивает электрическую безопасность и определяет параметры энергосбережения. В 1995 г. стандарт существенно расширили (ТСО 95), включив в него требования к эргономике мониторов. В ТСО 99 требования к мониторам еще более ужесточили. В частности, стали жестче требования к излучениям, эргономике, энергосбережению, пожаробезопасности. Присутствуют здесь и экологические требования, которые ограничивают наличие в деталях монитора различных опасных веществ и элементов, например тяжёлых металлов.

На что способен жидкий кристалл?

Жидкие кристаллы под действием электрического тока могут изменять поляризацию, проходящего через них света. Если взять две перпендикулярно сориентированные поляризационные решетки, изначально исключающие возможность прохождения луча света, и разместить между ними такой кристалл, то можно не только создать условия для прохождения светового поток, но и сделать этот процесс управляемым с помощью электроники.

Принцип работы монитора - фотография 42

Первые простые ЖК модули с изменяемой прозрачностью не отличалась миниатюрностью. Но позволяли создавать четкое монохромное изображение. Наиболее широкое применение эта технология получила в компактных дисплеях, использующих отраженный свет. Всем хорошо известны первые электронные часы, игрушка, где волк ловит яйца, и экраны на панелях управления различными устройствами.

Принцип работы монитора - фото 43

Вспомнив их проще понять, как формируется изображение с помощью ЖК.

Принцип работы монитора - изображение 44

Со временем производители усовершенствовали технологию:

  • модуль с поляризаторами, кристаллом и прозрачными электродами стал миниатюрным и из них стали формировать полноценные матрицы с микропикселями;
  • В качестве источника света с тыльной части системы стали использовать люминесцентные лампы. А позже и боле экономные светодиодные лампы;
  • Компактность позволила в одном пикселе разместить три ЖК модуля, каждый из которых был оснащен своим RGB светофильтром (красным, зеленым и синим) что открыло дорогу к созданию цветных ЖК экранов.

Кроме того, жидкокристаллические мониторы обзавелись несколькими разъемами, отлично подружились с видеокартами и стали безальтернативным инструментом для отображения цифровой графики и видео.

Принцип работы монитора - фото 45

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 3 чел.
Средний рейтинг: 4.3 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос:
Чтобы проголосовать, кликните на нужный вариант ответа.