Рефлекторный принцип работы нервной системы

Рефлекторный принцип работы нервной системы

Нервная система выполняет две основные функции:

1. Обеспечение адекватных реакций организма на постоянно меняющиеся условия внешней среды.

2. Регуляция и координация работы внутренних органов.

В основе представлений о нервной регуляции функций лежит учение о рефлексе.Рефлекс определяется как ответная реакция организма на раздражение, осуществляемая при участии нервной системы. При этом не каждая ответная реакция организма является рефлексом. Например, синяк в ответ на механическое раздражение возникает за счет разрыва сосудов кожи и свертывания крови; однако нервная система не принимает в этом участия, и появление синяка нельзя назвать рефлексом. Для того, чтобы обеспечить ответную реакцию, НС должна в первую очередь получить информацию о текущей ситуации от органов чувств. На основании этой информации, а также сигналов от центров памяти, потребностей, мотиваций и некоторых других НС «принимает решение» о том, какая ответная реакция будет наиболее оптимальной. После этого НС посылает управляющие импульсы к исполнительным органам (мышцам или железам), которые и осуществляют соответствующую реакцию.

Понятно, что для осуществления рефлекса в первую очередь необходимо, чтобы нервное возбуждение, которое возникает в ЦНС в ответ на какое-либо раздражение, дошло до исполнительного органа. Структурной основой осуществления этого процесса служит рефлекторная дуга.

Рефлекторная дуга – путь, по которому проходит нервный импульс в ходе реализации рефлекса. Она состоит из пяти отделов: 1) рецептор; 2) чувствительный нейрон, передающий импульс в ЦНС; 3) нервный центр; 4) двигательный нейрон; 5) рабочий орган, реагирующий на полученное раздражение.

Рецептор – чувствительное образование, которое трансформирует энергию раздражителя в нервный процесс (как правило, электрическое возбуждение). За рецептором идет чувствительный нейрон, находящийся в периферической нервной системе. Периферические отростки (дендриты) таких нейронов образуют чувствительный нерв и идут к рецепторам, а центральные (аксоны) входят в ЦНС и формируют синапсы на ее вставочных нейронах. В некоторых случаях (кожная чувствительность, обоняние) рецепторами являются окончания периферических отростков чувствительных нейронов. В этом случае первые два отдела рефлекторной дуги образованы одним и тем же нейроном. Вставочный нейрон ЦНС (или, точнее, нейроны, т.к. их обычно несколько) являются нервным центром каждого конкретного рефлекса. Аксоны вставочных нейронов образуют синапсы на двигательных нейронах, по аксонам которых нервный импульс в свою очередь доходит до исполнительного органа, вызывая соответствующую деятельность. Аксоны двигательных нейронов образуют двигательные нервы.

Таким образом, в дуги даже простых рефлексов входит обычно около 5-10 последовательно расположенных нейронов. В самом простом случае в рефлекторную дугу входит только два нейрона – чувствительный и двигательный. Примерами таких рефлексов могут быть коленный, возникающий в ответ на удар по сухожилию четырехглавой мышцы бедра, или ахиллов, возникающий в ответ на удар по сухожилию икроножной мышцы (см. рис. 18).

Для более адекватного понимания регуляции работы организма необходимо подробнее разобрать понятие «нервный центр». Нервный центр – это группа нейронов, необходимая для осуществления определенного рефлекса или более сложных форм поведения. Нервный центр перерабатывает информацию, которая поступает к нему от органов чувств или от других нервных центров и, в свою очередь, посылает команды к периферическим органам (мышцам и железам) или другим нервным центрам.

У беспозвоночных животных нервный центр может состоять только из нескольких нейронов. Так, у морского моллюска аплизии работой сердца управляют только четыре нейрона. У позвоночных нервные центры входят в состав ЦНС и могут включать тысячи и даже миллионы нейронов.

Каждый нервный центр находится в определенном месте нервной системы. Например, дыхательный центр, регулирующий работу дыхательных мышц, находится в продолговатом мозгу. При разрушении этого центра дыхание прекращается. Но на самом деле в дыхании принимают участие многие другие нейроны. Так, нервные волокна от дыхательного центра в продолговатом мозгу идут к группам двигательных нейронов спинного мозга, непосредственно управляющих дыхательными мышцами. В варолиевом мосту есть нервный центр, регулирующий правильное чередование вдоха и выдоха. Высший центр головного мозга – кора больших полушарий – тоже принимает участие в дыхании, благодаря чему дыхание можно регулировать произвольно. То же самое можно сказать о большинстве других функций организма (перемещение в пространстве, движения глаз, реакции на боль и т.д.). Поэтому в широком смысле слова нервный центр – это все структуры, согласованно влияющие на выполнение той или иной функции.

Именно благодаря рефлекторному принципу нервная система обеспечивает процессы саморегуляции. Если какой-либо физиологический параметр чрезмерно уменьшается, то автоматически (рефлекторно) включаются механизмы, обеспечивающие его увеличение. И наоборот, если какой-либо параметр увеличивается, включаются механизмы его уменьшения. Например, при повышении температуры тела ВНС обеспечивает расширение сосудов кожи и потоотделение, благодаря чему удаляются избытки тепла. Такой принцип функционирования называется еще механизмом отрицательной обратной связи.

В некоторых физиологических системах обнаружен также механизм положительной обратной связи, благодаря которой процесс, возникнув, некоторое время усиливает и поддерживает себя сам.

Для объяснения механизмов саморегуляции русский физиолог академик П.К.Анохин предложил концепцию «функциональной системы».

Функциональная система – временное или постоянное объединение различных элементов нервной системы (от рецепторов до исполнительных органов), возникшее или существующее для выполнения какой-либо конкретной физиологической задачи. Очень важным в этой концепции является идея о том, что при выполнении любого действия информация о его результатах поступает в ЦНС (в форме импульсов от соответствующих рецепторов). Это звено функциональной системы замыкает рефлекторную дугу в кольцо. Если результат действий частично или полностью не соответствует ожидаемому, то ЦНС по механизму обратной связи направляет протекание реакций в необходимую сторону. Таким образом, поведение строится по принципу непрерывного кольцевого взаимодействия организма и среды, постоянной оценки результатов деятельности – принципу рефлекторного кольца. Этот принцип существенно дополняет представление о рефлекторной дуге, известное еще со времен Р.Декарта.

Рефлекторный принцип деятельности ЦНС

Рефлекторный принцип работы нервной системы - фотография 1 - изображение 1

Физиология центральной нервной системы (ЦНС).

ЦНС – система, осуществляющая регуляцию практически всех функций в организме. ЦНС осуществляет связь в единое целое всех клеток и органов нашего организма. С ее помощью происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности. Кроме того, ЦНС осуществляет связь организма с внешней средой, путем анализа и синтеза поступающей к ней информации от рецепторов и формирует ответную реакцию, направленную на поддержание гомеостаза.

Строение ЦНС.

Структурной и функциональной единицей нервной системы является нервная клетка (нейрон). Нейрон -специализированная клетка, способная принимать, кодировать, передавать и хранить информацию, организовывать ответные реакции организма на раздражения, устанавливать контакты с другими нейронами.

Нейрон состоит из тела (сомы) и отростков - многочисленных дендритов и одного аксона (рис1).

Рефлекторный принцип деятельности ЦНС - фото 2 - изображение 2

Рис.1. Строение нейрона.

Дендриты обычно сильно ветвятся и образуют множество синапсов с другими нервными клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, функцией которого является генерация нервного импульса, который по аксону проводится к другим клеткам. Длина аксона может достигать одного метра и более. Аксон сильно ветвится, образуя множество коллатералей (паралелльных путей) и терминалей. Терминаль – окончание аксона, с помощью которого образуется синапс с другой клеткой. В ЦНС терминали формируют нейро-нейрональные синапсы, на периферии (за пределами ЦНС) аксоны образуют либо нейро-мышечные, либо нейросекреторные синапсы. Окончание аксона чаще называют не терминалью, а синаптической бляжкой (или синаптической пуговкой). Синаптическая бляшка – это концевое (терминальное) утолщение аксона, служащее для депонирования медиатора (смотрите лекции по синапсу). Мембрана окончаний содержит большое число потенциалозависимых кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении.

В большинстве центральных нейронов (т.е. нейронов ЦНС) ПД первично возникает в области мембраны аксонного холмика, и отсюда возбуждение распространяется по аксону к синаптической бляшке. Таким образом, уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов.

Каждый нейрон выполняет 2 основные функции: проводит импульсацию и обрабатывает импульсацию (смотрите далее «трансформация ритма возбуждения»). Любой участок нейрона обладает проводимостью. Проведение импульсации (информации) от одной клетки к другой нейрон осуществляет благодаря своим отросткам: аксону и дендритам. Каждый нейрон имеет один аксон и множество дендритов.

Обработка импульсации (обработка информации, трансформация импульсации) - это наиболее значимая функция нейрона, которая осуществляется на аксонном холмике.

Помимо нейронов в ЦНС имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны (периферические – значит находящиеся за пределами ЦНС) также окружены оболочкой из глиальных клеток. Они способны к делению в течение всей жизни. Размеры 3-4 раза меньше, чем нейроны. С возрастом их число увеличивается.

Функции клеток глии многообразны:

1) они являются для нейронов опорным, защитным и трофическим аппаратом;

2) поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве;

3) активно поглощают нейромедиаторы, ограничивая, таким образом, время их действия.

Классификация нейронов

Зависимости от отделов ЦНС: вегетативные и соматические

По виду медиатора , которая выделяется окончаниями нейрона: адренэргические(НА) и т.д

По влиянию бывают возбуждающие и тормозящие

По специфичности воспринимающей сенсорной информации нейроны высших отделов ЦНС бывают моно и полимодальные

По активности нейронов бывают:фоноактивные, молчащие- которые возбуждаются только в ответ на раздражение.

По источнику или направении передачи информации : афферентные, вставочные, эфферентные

Рефлекторный принцип деятельности ЦНС.

Основным механизмом деятельности ЦНС является рефлекс. Рефлекс - это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС. Например, отдергивание руки при уколе, смыкание век при раздражении роговицы – это тоже рефлекс. Отделение желудочного сока при попадании пищи в желудок, дефекация при наполнении прямой кишки, покраснения кожи при тепловом воздействии, коленный, локтевой, Бабинского, Розенталя – это все примеры рефлексов. Количество рефлексов безгранично. Общим для них всех является обязательное участие в их реализации ЦНС.

Другим определением рефлекса, также подчеркивающим роль ЦНС, является следующее: рефлекс–это центробежный ответ на центростремительное раздражение. (В приведенных примерах самостоятельно определите, что является центробежным ответом, а что раздражением. Раздражение всегда центростремительное, т.е. действующий на рецепторы раздражитель вызывает импульсацию, которая поступает в ЦНС).

Структурной основой рефлекса, его материальным субстратом является рефлекторная дуга (рис.2).

Рефлекторный принцип работы нервной системы - фотография 3 - изображение 3

Рис. 2.Рефлекторная дуга

Рефлекторная дуга состоит из 5 звеньев:

1) рецептора;

2) афферентного (чувствительного, центростремительного) звена;

3) вставочного звена (центрального);

4) эфферентного (двигательного, центробежного) звена;

5) эффектора (рабочего органа).

Участок тела, содержащий рецепторы, при раздражении которых возникает определенный рефлекс, называется рецептивным полем рефлекса.

Рефлекс может осуществляться только тогда, когда сохранена целостность всех звеньев рефлекторной дуги.

Нервный центр.

Нервный центр (центр ЦНС или ядро) – это совокупность нейронов, принимающих участие в осуществлении конкретного рефлекса. Т.е. каждый рефлекс имеет свой центр: существует центр коленного рефлекса, свой центр у локтевого рефлекса, свой - у мигательного, есть сердечно-сосудистый, дыхательный, пищевой центры, центры сна и бодрствования, голода и жажды и т.д. В целом организме при формировании сложных адаптивных процессов происходит функциональное объединение нейронов, расположенных на различных уровнях ЦНС, т.е. сложное объединение большого количества центров.

Объединение нервных центров (ядер) между собой осуществляется проводящими путями ЦНС с помощью нейро-нейрональных (межнейронных) синапсов. Существует 3 типа соединения нейронов: последовательное, дивергентное и конвергентное.

Нервные центры обладают рядом характерных функциональных свойств, которые во многом обусловлены этими тремя типами нейронных сетей, а также свойствами межнейронных синапсов.

Основные свойства нервных центров:

1. Конвергенция (схождение) (рис.3). В ЦНС к одному нейрону могут сходиться возбуждения от различных источников. Эта способность возбуждений сходиться к одним и тем же промежуточным и конечным нейронам получила название конвергенции возбуждений

Рефлекторный принцип регуляции. Вегетативная нервная система (стр. 1 из 2) - фото 4 - изображение 4

Рис.3. Конвергенция возбуждения.

2. Дивергенция (расхождение) - расхождение импульсаций от одного нейрона сразу на многие нейроны. На основе дивергенции происходит иррадиация возбуждения и становится возможным быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Рефлекторный принцип работы нервной системы. Особенности рефлекторной деятельности в различные возрастные периоды. - изображение 5 - изображение 5

Рис.4. Дивергенция возбуждения.

3. Возбуждение в нервных центрах распространяется односторонне - от рецептора к эффектору, что обусловливается свойством химических синапсов односторонне проводить возбуждение от пресинаптической мембраны к постсинаптической.

4. Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну. Это обусловлено замедленным проведением возбуждения через синапсы (синаптическая задержка), которых в ядре много.

суммация возбуждений. Суммация – сложение допороговых импульсов. Различают два вида суммации.

Временная или последовательная, если импульсы возбуждения приходят к нейрону по одному и тему же пути через один синапс с интервалом меньше, чем время полной реполяризации постсинаптической мембраны. В этих условиях локальные токи на постсинаптической мембране воспринимающего нейрона суммируются и доводят ее деполяризацию до уровня Ек, достаточного для генерации нейроном потенциала действия. Временной данная суммация называется, потому что на нейрон в течение некоторого промежутка времени приходит серия импульсов (раздражений). Последовательной она называется, потому что реализуется в последовательном соединении нейронов.

Пространственная или одновременная - наблюдается в том случае, когда импульсы возбуждения поступают к нейрону одновременно через разные синапсы. Пространственной данная суммация называется, потому что раздражитель действует на некоторое пространство рецептивного поля, т.е. несколько (минимум 2) рецепторов разных участков рецептивного поля. (Тогда как временная суммация может реализоваться при действии серии раздражителей на один и тот же рецептор). Одновременной она называется, потому что информация к нейрону приходят одновременно по нескольким (минимум 2) каналам связи, т.е. одновременная суммация, реализуется конвергентным соединением нейронов.

6.Трансформация ритма возбуждения - изменение количества импульсов возбуждения, выходящих из нервного центра, по сравнению с числом импульсов, приходящих к нему. Различают два вида трансформации:

1) понижающая трансформация, в основе которой, лежит явление суммации возбуждений, когда в ответ на несколько пришедших допороговых возбуждений к нервной клетке, в нейроне возникает только одно пороговое возбуждение;

2) повышающая трансформация, в ее основе лежат механизмы умножения (мультипликации), способные резко увеличить количество импульсов возбуждения на выходе.

7. Рефлекторное последействие - заключается в том, что рефлекторная реакция заканчивается позже прекращения действия раздражителя. Это явление обусловлено двумя причинами:

1) длительной следовой деполяризацией мембраны нейрона, на фоне прихода мощной афферентации (сильной чувствительной импульсации), вызывающей выделение большого количества (квантов) медиатора, что обеспечивает возникновение нескольких потенциалов действия на постсинаптической мембране и, соответственно, кратковременное рефлекторное последействие;

2) пролонгированием выхода возбуждения к эффектору в результате циркуляции (реверберации) возбуждения в нейронной сети типа "нейронной ловушки". Возбуждение, попадая в такую сеть, может длительное время циркулировать в ней, обеспечивая длительное рефлекторное последействие. Возбуждение в такой цепочке может циркулировать до тех пор, пока какое-либо внешнее воздействие затормозит этот процесс или в ней наступит утомление. Примером последействия может служить хорошо всем известная жизненная ситуация, когда даже после прекращения действия сильного эмоционального раздражителя (после прекращения ссоры) еще какое-то более или менее продолжительное время продолжается общее возбуждение, артериальное давление остается повышенным, сохраняется гиперемия лица, тремор кистей.

8. Нервные центры обладают высокой чувствительностью к недостатку кислорода.Нервные клетки отличаются интенсивным потреблением О2. Мозг человека поглощает около 40-70 мл О2 в минуту, что составляет 1/4-1/8 часть всего количества О2, потребляемого организмом. Потребляя большое количество О2, нервные клетки высокочувствительны к его недостатку. Частичное прекращение кровообращения центра ведет к тяжелым расстройствам деятельности его нейронов, а полное прекращение -

9. Нервные центры, как и синапсы, обладают высокой чувствительностью к действию различных химических веществ, особенно ядов. На одном нейроне могут располагаться синапсы, обладающие различной чувствительностью к различным химическим веществам. Поэтому можно подобрать такие химические вещества, которые избирательно будут блокировать одни синапсы, оставляя другие в рабочем состоянии. Это делает возможным корректировать состояния и реакции как здорового, так и больного организма.

быстрой утомляемостью в отличие от нервных волокон, которые считаются практически неутомляемыми. Это обусловлено резким уменьшением запасов медиатора, уменьшением чувствительности к медиатору постсинаптической мембраны, уменьшением ее энергетических запасов, что наблюдается при длительной работе и является основной причиной развития утомления.

низкой лабильностью,основной причиной которой является синаптическая задержка. Суммарная синаптическая задержка, наблюдающаяся во всех нейро-нейрональных синапсах при проведении импульсации по ЦНС, или в нервном центре называется центральной задержкой.

тонусом, который выражается в том, что даже при отсутствии специальных раздражений, они постоянно посылают импульсы к рабочим органам.

13. Нервные центры обладают пластичностью - способностью изменять собственное функциональное назначение и расширять свои функциональные возможности. Так же пластичность можно определить, как способность одних нейронов брать на себя функцию пораженных нейронов того же центра. Именно, с явлением пластичности связана способность восстанавливать двигательную активность конечностей, например, ног, утраченную в результате травм спинного мозга. Однако это возможно только при поражении части нейронов данного центра или при сохранении целостными части проводящих путей ЦНС. При полном разрыве спинного мозга восстановление двигательной активности оказывается невозможным. Кроме того, нейроны одного центра, например, сгибателей не могут брать на себя функцию нейронов другого центра - разгибателей. Т.е. явление пластичности центров ЦНС ограничено.

14. Окклюзия (запирание) (рис.5) - это сложение пороговой импульсации. Окклюзия осуществляется (так же как и пространственная суммация) в конвергирующей системе соединения нейронов. Одновременной активации нескольких (минимум двух) рецепторов сильным или сверхсильным раздражителями к одному нейрону будут конвергировать несколько пороговых или сверхпороговых импульса. На этом нейроне будет происходить окклюзия, т.е. эти два раздражителя он ответит с той же максимальной силой, что и на каждый из них отдельности. Феномен окклюзии состоит в том, что количество возбужденных нейронов при одновременном раздражении афферентных входов обоих нервных центров оказывается меньше, чем арифметическая сумма возбужденных нейронов при отдельном раздражении каждого афферентного входа в отдельности.

Рефлекторная дуга - изображение 6 - изображение 6

Явление окклюзии приводит к снижению силы ответной реакции. Окклюзия имеет охранительное значение, предотвращая перенапряжение нейронов при действии сверхсильных раздражителей.

2016-07-293819

Рефлекторный принцип работы нервной системы

Рефлекторный принцип функционирования ЦНС - фотография 7 - изображение 7

Общий план строения нервной системы

Значение нервной системы. Нервная система играет важнейшую роль в регуляции функций организма. Она обеспечивает согласованную работу клеток, тканей, органов и их систем. При этом организм функционирует как единое целое. Благодаря нервной системе осуществляется связь организма с внешней средой.

Деятельность нервной системы лежит в основе чувств, обучения, памяти, речи и мышления - психических процессов, с помощью которых человек не только познает окружающую среду, но и может активно ее изменять.

Нервная ткань. Нервная система образована нервной тканью, которая состоит из нейронов и мелких клеток-спутников. Нейроны - главные клетки нервной ткани: они обеспечивают функции нервной системы. Клетки-спутники окружают нейроны, выполняя питательную, опорную и защитную функции. Клеток-спутников примерно в 10 раз больше, чем нейронов.

Рефлекс как основная форма деятельности нервной системы - фотография 8 - изображение 8

Нейрон состоит из тела и отростков. Различают два типа отростков: дендриты и аксоны. Отростки могут быть длинными и короткими.

Большинство дендритов (греч. дендрон - дерево) - короткие, сильно ветвящиеся отростки. У одного нейрона их может быть несколько. По дендритам нервные импульсы поступают к телу нервной клетки.

Аксон, (греч. Аксис - отросток) - длинный, чаще всего мало ветвящийся отросток, по которому импульсы идут от тела клетки. Каждая нервная клетка имеет только 1 аксон, длина которого может достигать нескольких десятков сантиметров. По длинным отросткам нервных клеток импульсы в организме могут передаваться на большие расстояния.

Длинные отростки часто покрыты оболочкой из жироподобного вещества белого цвета. Их скопления в центральной нервной системе образуют белое вещество. Короткие отростки и тела нейронов не имеют такой оболочки. Их скопления образуют серое вещество.

Нейроны различаются по форме и функциям. Одни нейроны, чувствительные, передают импульсы от органов чувств в спинной и головной мозг. Тела чувствительных нейронов лежат на пути к центральной нервной системе в нервных узлах. Нервные узлы - это скопления тел нервных клеток за пределами центральной нервной системы. Другие нейроны, двигательные, передают импульсы от спинного и головного мозга к мышцам и внутренним органам. Связь между чувствительными и двигательными нейронами осуществляется в спинном и головном мозге вставочными нейронами, тела и отростки которых не выходят за пределы мозга. Спинной и головной мозг связан со всеми органами нервами.

Нервы - скопления длинных отростков нервных клеток, покрытых оболочкой. Нервы, состоящие из аксонов двигательных нейронов, называются двигательными нервами. Чувствительные нервы состоят из дендритов чувствительных нейронов. Большинство нервов содержат и аксоны и дендриты. Такие нервы называются смешанными. По ним импульсы идут в двух направлениях - к центральной нервной системе и от нее к органам.

Си́напс[1] (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Отделы нервной системы. Нервная система состоит из центрального и периферического отделов. Центральный отдел представлен головным и спинным мозгом, защищенным оболочками из соединительной ткани. К периферическому отделу относятся нервы и нервные узлы.

Часть нервной системы, которая регулирует работу скелетных мышц, называют соматической (греч. Сома - тело). Посредством соматической нервной системы человек может управлять движениями, произвольно вызывать или прекращать их. Часть нервной системы, регулирующую деятельность внутренних органов (сердца, желудка, желез и т.д.), называют автономной (греч. автономия - самоуправление). Работа автономной нервной системы не подчиняется человека. Нельзя, например, по желанию остановить сердце, ускорить процесс пищеварения, задержать потоотделение.

В автономной нервной системе различают два отдела: симпатический и парасимпатический. Большинство внутренних органов снабжаются нервами этик двух отделов. Как правило, они оказывают противоположные влияния на органы. Например, симпатический нерв усиливает и ускоряет работу сердца, а парасимпатический - замедляет и ослабляет ее.

Рефлекторный принцип работы нервной системы

Рефлекс. Рефлекторная дуга. Ответную реакцию организма на раздражение, осуществляемую и контролируемую центральной нервной системой, называют рефлексом. Путь, по которому проводятся нервные импульсы при осуществлении рефлекса, называют рефлекторной дугой. Рефлекторная дуга состоит из пяти частей: рецептора, чувствительного пути, участка центральной нервной системы, двигательного пути и рабочего органа.

Рефлекторная дуга начинается рецептором. Каждый рецептор воспринимает определенный раздражитель: свет, звук, прикосновение, запах, температуру и др. Рецепторы преобразуют чти раздражители в нервные импульсы-сигналы нервной системы. Нервные импульсы имеют электрическую природу, распространяются но мембранам длинных отростков нейронов и одинаковы у животных и человека.

От рецептора нервные импульсы по чувствительному пути передаются в центральную нервную систему. Этот путь образован чувствительным нейроном. От центральной нервной системы импульсы по двигательному пути идут к рабочему органу. В состав большинства рефлекторных дуг входят и вставочные нейроны, которые находятся как в спинном, так и в головном мозге.

Рефлексы человека разнообразны. Некоторые из них очень просты. Например, одергивание руки в ответ на укол или ожог кожи, обильное выделение слез под действием веществ, раздражающих глаза, чихание при попадании посторонних частиц в носовую полость. Во время рефлекторной реакции рецепторы рабочих органов передают сигналы в центральную нервную систему, которая контролирует, насколько реакция эффективна.

Таким образом, основной принцип работы нервной системы рефлекторный.

Значение возбуждения и торможения для рефлекторных реакции организма. В ответ на раздражение возникает согласованное рефлекторное изменение деятельности многих систем органов. Так, одергивание руки от горячего предмета возможно лишь при сокращении одних мышц и расслаблении других. При этом рефлекторно изменяется работа сердца, дыхание и т. д. Такая согласованная рефлекторная деятельность обусловлена взаимодействием в центральной нервной системе процессов возбуждения и торможения. Возбуждение нейронов сопровождается появлением или усилением одних рефлекторных реакций. Торможение нейронов приводит к ослаблению или полному прекращению других рефлексов.

Торможение ограничивает и уменьшает возбуждение нейронов. Ослабление торможения приводит к чрезмерному возбуждению и истощению нервной системы, а иногда и гибели организма. В то же время возбуждение обеспечивает реакцию организма на раздражители внешней и внутренней среды.

Впервые торможение в центральной нервной системе было открыто русским физиологом И.М. Сеченовым. Позднее ученые установили, что торможение связано с работой тормозных нейронов.

Спинной мозг

Строение спинного мозга. Спинной мозг расположен в костном позвоночном канале. Он имеет вид длинного белого шнура диаметром около 1 см. В центре спинного мозга проходит узкий спинномозговой канал, заполненный спинномозговой жидкостью. На передней и задней поверхности спинного мозга имеются две глубокие продольные борозды. Они делят его на правую и левую половины.

Центральная часть спинного мозга образована серым веществом, которое состоит из вставочных и двигательных нейронов. Вокруг серого вещества расположено белое вещество, образованное длинными отростками нейронов. Они направляются вверх или вниз вдоль спинного мозга, образуя восходящие и нисходящие проводящие пути.

От спинного мозга отходит 31 пара смешанных спинномозговых нервов, каждый из которых начинается двумя корешками: передним и задним.

Задние корешки - это аксоны чувствительных нейронов. Скопления тел этих нейронов образуют спинномозговые узлы. Передние корешки - это аксоны двигательных нейронов.

Функции спинного мозга. Спинной мозг выполняет 2 основные функции: рефлекторную и проводниковую.

Рефлекторная функция спинного мозга обеспечивает движение. Через спинной мозг проходят рефлекторные дуги. с которыми связано сокращение скелетных мышц тела (кроме мышц головы). Пример простейшего двигательного рефлекса - коленный рефлекс. Он проявляется в быстром подъеме ноги при резком ударе по сухожилию ниже коленной чашечки.

Спинной мозг вместе с головным мозгом регулирует работу внутренних органов: сердца, желудка, мочевого пузыря, половых органов.

Белое вещество спинного мозга обеспечивает связь и согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Нервные импульсы, поступающие в спинной мозг от рецепторов, передаются по восходящим проводящим путям в головной мозг. Из головного мозга импульсы по нисходящим проводящим путям поступают к нижележащим отделам спинного мозга и оттуда - к органам.

Головной мозг регулирует работу спинного мозга. Известны случаи, когда в результате ранения или перелома позвоночника у человека прерывается связь между спинным и головным мозгом. Головной мозг у таких людей функционирует нормально. Но большинство спинномозговых рефлексов, центры которых расположены ниже места повреждения, исчезают. Такие люди могут поворачивать голову, совершать жевательные движения, изменять направление взгляда, иногда у них действуют руки. В то же время нижняя часть их тела лишена чувствительности и неподвижна.

Рефлекторный принцип деятельности ЦНС - изображение 9 - изображение 9

Нервное сплетение - это анатомическая структура периферической части нервной системы, представляющая собой сеть переплетающихся и анастомозирующих афферентных (чувствительных) и эфферентных (двигательных), соматических ивегетативных нервов и нервных узлов (ганглиев).Соматический отдел нервной системы содержит соматические нервные сплетения, а вегетативный отдел нервной системы - вегетативные нервные сплетения.Соматические нервные сплетения образованы передними ветвями шейных, грудных, поясничных, крестцовых и копчиковыхспинномозговых нервов. Выделяют шейное сплетение, плечевое сплетение, поясничное сплетение, крестцовое сплетение икопчиковое сплетение. Иногда поясничное и крестцовое сплетение объединяют в пояснично-крестцовое сплетение. От соматических сплетений отходят периферические нервы. В состав этих нервов входят нервные волокна принадлежащие нескольким соседним сегментам спинного мозга. Периферические нервы иннервируют кожу и мышцы шеи, груди, живота, верхних и нихних конечностей.

Ше́йное не́рвное сплете́ние (лат. plexus cervicalis) — это нервное сплетение, парное образование, сформированное передними ветвями четырёх верхних шейных спинномозговых нервов, соединённых тремя дугообразными петлями. Располагается на переднелатеральной поверхности глубоких мышц шеи (мышца, поднимающая лопатку, медиальная лестничная мышца, ременная мышца шеи) на уровне четырех верхних шейных позвонков. Спереди и сбоку оно прикрыто грудино-ключично-сосцевидной мышцей. Шейное сплетение состоит из таких нервов, как:

§ мышечные;

§ кожные;

§ диафрагмальные.

Имеет соединение с добавочным и подъязычным нервам.

Двигательные (мышечные) нервы (ветви) иннервируют расположенные рядом мышцы: длинные мышцы шеи и головы, передние, средние и задние лестничные мышцы, передние и латеральные прямые мышцы головы, передние межпоперечные мышцы и мышцы, поднимающие лопатку, а также шейная петля (лат. ansa cervicalis). В её образовании участвуют нисходящая ветвь подъязычного нерва — верхний корешок (лат. radix superior (anterior)), содержащий нервные волокна из шейного сплетения, и ветви, отходящие от шейного сплетения, — нижний корешок (лат. radix inferior (posterior)). Шейная петля располагается немного выше верха промежуточного сухожилия лопаточно-подъязычной мышцы, на передней поверхности общей сонной артерии. Нервы, отходящие от шейной петли, иннервируют мышцы, расположенные ниже подъязычной кости (подподъязычные мышцы: грудино-подъязычная, грудино-щитовидная, лопаточно-подъязычная, щитоподъязычная). От шейного сплетения отходят ветви двигательных нервов, иннервирующие также трапециевидную и грудино-ключично-сосцевидную мышцы[1].

Классификация рефлексов

  1. По биологическому значению:
  2. По отвечающему рабочему органу:
  3. По нахождению нервного центра:
  4. По сложности рефлекса:
  5. По отвечающему органу:
  6. По происхождению:

Безусловные рефлексы являются видовыми, постоянными, наследственными, сохраняются в течение всей жизни. В процессе эмбрионального развития формируются рефлекторные дуги всех безусловных рефлексов. Совокупность сложных врожденных рефлексов - это инстинкты. Условные рефлексы являются индивидуальными, приобретаются в течение жизни человека, не наследуются. У человека сложное социальное поведение, мышление, сознание, индивидуальный опыт (высшая нервная деятельность) - это совокупность огромного количества разнообразных условных рефлексов. Материальной основой условных рефлексов является кора больших полушарий. Автором учения о высшей нервной деятельности является выдающийся отечественный физиолог И.П Павлов, лауреат Нобелевской премии (1904г.).

Согласование всех рефлекторных реакций осуществляется в центральной нервной системе благодаря процессам возбуждения и торможения деятельности нейронов.

Вопросы для самоконтроля:
  1. Назовите функции нервной системы.
  2. На какие части делится нервная система по топографическому и функциональному принципу?
  3. Опишите строение синапса. Каков механизм передачи нервного импульса в синапсе?
  4. На какие группы по функциям подразделяются нейроны?
  5. Что понимаю под рефлекторным принципом деятельности нервной системы?
  6. Какие элементы включает рефлекторная дуга?
  7. Какие виды рефлексов выделяют?
  8. В чем состоит отличие условных рефлексов от безусловных?
Дайте определение понятиям: нейрон, синапс, вещество-медиатор, рефлекс, афферентный нейрон, вставочный нейрон, эфферентный нейрон, рецептор, эффектор.

Рефлекторный принцип регуляции. Вегетативная нервная система (стр. 1 из 2)

РЕФЛЕКТОРНАЯ ДЕЯТЕЛЬНОСТЬ ЦНС - фото 10 - изображение 10

Идею о том, что организм, наделенный нервной системой, способен отвечать на действие внешних раздражителей по типу «кнопка – ответ», высказал французский философ Репе Декарт (XVII в.). Термин «рефлекс» был введен Иржи Прохазкой (конец XVIII в.). Многие выдающиеся физиологи XIX и XX вв. разрабатывали теорию рефлекторной деятельности. Огромный вклад внесли И.М. Сеченов, И.П. Павлов.

Рефлекторный принцип работы нервной системы - фото 11 - изображение 11

Итак, вряд ли ЦНС «справляется» со своими управленческими задачами только с помощью рефлекса. Но пока в курсе нормальной физиологии работает лишь идея «рефлекса».

Рефлекторная дуга – это морфологическая основа рефлекса. Рефлекс – это закономерная реакция организма на действие раздражителя (обратите внимание – на действие раздражителя, а если его нет – значит, это не рефлекс) при обязательном участии ЦНС. Различаются также рефлексы, реализующиеся через клетки нервных ганглиев. В любом случае должна быть рефлекторная дуга. В случае безусловных рефлексов она формируется независимо от жизненного опыта индивидуума – становление безусловных рефлекторных дуг генетически запрограммировано. Условно-рефлекторный процесс требует создания новых рефлекторных дуг на основе сочетания работы безусловных рефлекторных дуг и индифферентного раздражителя.

Самая простая рефлекторная дуга – моносинаптическая. Она состоит из 2 нейронов: афферентного и эфферентного. Обычно латентный период, т.е. время от момента нанесения раздражителя до конечного эффекта (или это называется временем рефлекса) – достигает в таком случае 50–100 мс, а центральное время – промежуток времени, в течение которого импульс пробегает по структурам мозга, составляет около 3 мс. Известно, что для прохождения 1 синапса в среднем требуется около 1,5 мс. Таким образом, центральное время рефлекса косвенно указывает на число синаптических передач, имеющих место в данном рефлексе.

Виды рефлексов. Отметим наиболее существенные моменты этой классификации.

1. Безусловные и условные рефлексы – по способу образования рефлекторной дуги.

2. Моносинаптические, полисинаптические – по компонентам рефлекторной дуги.

3. Спинальные, бульбарные, мезенцефальные, кортикальные – по расположению основных нейронов дуги, без которых рефлекс не реализуется. Например, миотатический рефлекс может иметь место у спинального животного.

4. Интерорецептивные, экстсрорецептивные – по характеру рецепторов, раздражение которых вызывает данный рефлекс.

5. Половые, оборонительные, пищевые и т.д. – по биологическому значению рефлекса.

6. Рефлексы соматической и вегетативной нервной системы (или – соматические, вегетативные) – по принципу – какой отдел ЦНС участвует в реализации рефлекса.

7. Сердечные, сосудистые, слюноотделительные – по конечному результату.

Физиология вегетативной нервной системы

Вегетативная (ВНС) или автономная нервная система представляет собой совокупность нейронов головного и спинною мозга, участвующих в регуляции деятельности внутренних органов.

Центральные структуры вегетативной нервной системы (ВНС)

Различают краниобульбарный отдел ВНС, включающий в себя ядра III, VII, IX и Х пар черепно-мозговых нервов, тазовый нерв и тораколюмбальный отделы (ядра боковых рогов спинного мозга).

С точки зрения иерархии управления все образования ВНС условно делят на этажи. 1-й этаж представлен интрамуральными сплетениями (метасимпатическая нервная система). 2-й этаж представлен паравертебральными и превертебральными ганглиями, в которых могут замыкаться вегетативные рефлексы, независимо от вышерасположенных образований. 3-й уровень – центральные структуры симпатической и парасимпатической системы (скопление прсганглионарных нейронов в стволе мозга и спинном мозге). 4-й этаж представлен высшими вегетативными центрами – гипоталамусом, ретикулярной формацией, мозжечком, базальными ганглиями, корой больших полушарий.

Основная функция ВНС – это регуляция деятельности внутренних органов. При этом симпатическая система (Б), как правило, вызывает мобилизацию деятельности жизненно важных органов, повышает энергообразование в организме – за счет активации процессов гликогенолиза, глюконсо-генеза, липолиза оказывает эрготропное влияние.

Парасимпатическая система (А) оказывает трофотропное действие, она способствует восстановлению нарушенного во время активности организма гомеостаза. Метасимпатическая нервная система оказывает регулирующее воздействие на мышечные структуры в желудочно-кишечном тракте, регулируя его моторику, и в сердце, регулируя его сократительную активность.

Общий план строения ВНС. Для парасимпатической (А) и симпатической (Б) нервной системы характерно следующее строение: центральные нейроны, или правильнее их называть – преганглионарные нейроны, расположены в стволе мозга (парасимпатические) или в спинном мозге (в торакальном отделе – симпатические, в сакральном – парасимпатические нейроны). Их отростки – преганглионарные волокна – идут до соответствующих вегетативных ганглиев (симпатические – до паравертебральных и превертебральных, парасимпатические – до интрамуральных), где они заканчиваются синапсами на постганглионарных нейронах. Эти нейроны дают аксоны, которые идут непосредственно к органу (объекту управления). Эти аксоны называются постганглионарными волокнами.

Метасимпатическая нервная система

Метасимпатическая нервная система (МНС) – это комплекс микроганглионарных образований, расположенных в стенках внутренних органов, обладающих моторной активностью. Речь идет о наличии микроганглиев (интрамуральных ганглиев) в желудке, кишечнике, мочевом пузыре, сердце, бронхах. В матке, в области ее шейки, тоже имеется метасимпатическая система. Наиболее изучена Метасимпатическая система кишечника и сердца.

Какую же функцию и каким образом осуществляет метасимпатическая нервная система? Метасимпатичсская система может, во-первых, осуществлять передачу центральных влияний – за счет того, что парасимпатические и симпатические волокна могут контактировать с мстасимпатической системой и тем самым коррегировать ее влияние на объекты управления. Во-вторых, метасимпатическая система может выполнять роль самостоятельного интегрирующего образования, так как в ней имеются готовые рефлекторные дуги (афферентные – вставочные – эфферентные нейроны).

Симпатическая система

Преганглионарные нейроны симпатической нервной системы расположены в боковых ядрах спинного мозга, начиная с 8-го шейного сегмента и заканчиваясь 2-м поясничным сегментом включительно. В сегментах 8-го шейного, 1 и 2 грудного сегмента находятся нейроны, возбуждение которых вызывает расширение зрачка (сокращение дилататора зрачка), сокращение глазничной части круговой мышцы глаза, а также сокращение одной из мышц верхнего века.

От 1,2,3,4 и 5 грудных сегментов начинаются преганглионарные симпатические волокна, которые направляются к сердцу и бронхам.

Рефлекторный принцип работы нервной системы - изображение 12 - изображение 12

Схема вегетативной нервной системы

I – Преганглионарные волокна,

II – вегетативные ганглии,

III – постганглионарные волокна и клетки-мишени,

IV– иннервируемые органы, в которых заложены клетки-мишени;

1 – сосуд, 2 – бронхи, 3 – потовая железа, 4 – надпочечники, 5 – матка, 6 – скелетные мышцы, 7 – гладкомышечные волокна, 8 – железистые клетки, 9 – волокно скелетной мышцы;

В отличие от парасимпатической нервной системы симпатическая иннервирует почти все органы: сердце, сосуды, бронхи, ГМК желудочно-кишечного тракта, ГМК мочеполовой системы, потовые железы, печень, мышцы зрачка, матку, ткани, в которых совершается липолиз, гликогенолиз, надпочечники, ряд других желез внутренней секреции.

На основании физиологических и фармакологических данных можно составить следующую схему воздействия симпатических волокон на деятельность органов и тканей (см. таблицу).

Возможные варианты реакций органов-мишеней на норадреналин в зависимости от преобладания в них а- или Р-адренорецепторов

NN Орган Эффект Альфа-адренорецепторы Бета-АР Примечание
1 сердце стимуляция бета-1-АР, усиление работы сердца
2 сосуды сердца дилатация (м.б. констрикция) Альфа-АР, сужение бета-2-АР, расслабление доминирование бета-АР приводит к дилататорному эффекту
3 сосуды кожи, сосуды ЖКТ констрикция Альфа-1-АР, активация
4 сосуды скелетных мышц в покое конструкция, в работающих мышцах – дилатация Альфа-1-АР, стимуляция бета-2-АР, расслабление
5 вены конструкция Альфа-1-АР, стимуляция
6 гмкжкт расслабление Альфа-1-АР, расслабление бета-2-АР, расслабление
7 сфинктеры ЖКТ сокращение Альфа-1-АР, сокращение
8 мышца мочевого пузыря (детруссор) расслабление бета-2-АР, расслабление
9 сфинктер мочевого пузыря сокращение Альфа-1-АР, сокращение
10 семявыносящий проток стимуляция Альфа-1-АР, сокращение
11 семенные пузырьки стимуляция Альфа-1-АР, сокращение
12 матка эффект зависит от доминирования популяции АР Альфа 1 – АР, стимуляция бета-2-АР, расслабление *
13 цилиарная мышца глаза расслабление бета-2-АР, расслабление
14 дилататор зрачка стимуляция Альфа-1-АР
15 трахеобронхи-альные мышцы расслабление бета-2-АР, расслабление
16 секреция в ЖКТ угнетение бета-2-АР, угнетение
17 гликогенолиз в печени стимуляция бета-2-АР, стимуляция
18 глюконеогенез стимуляция бета-2-АР, стимуляция
19 липолиз стимуляция бета-2-АР, стимуляция
20 потовые железы стимуляция за счет АХ+М-ХР

* У небеременных симпатическая система вызывает стимуляцию. При беременности основная масса симпатических волокон дегенерирует, и одновременно при беременности возрастает концентрация бета-2-АР, поэтому стимуляция не имеет места.

Рефлекторный принцип работы нервной системы. Особенности рефлекторной деятельности в различные возрастные периоды.

Рефлекторный принцип работы нервной системы - фото 13 - изображение 13

Деятельность нервной системы носит рефлекторный характер. Рефлексом называется ответная реакция организма на раздражение, осуществляемая центральной нервной системой. Путь, по которому нервное возбуждение передается при рефлексе, является рефлекторной дугой. Рефлекторная дуга включает следующие отделы: рецепто-ры, афферентные (чувствительные) нервные волокна, участок цен-тральной нервной системы, эфферентные (двигательные) нервные волокна, рабочий орган. В рефлекторной дуге нервный импульс проводится в одном направлении — от афферентного нейрона к эф-ферентному.

Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из чувствительного, двигательного и одного вставочного нейронов. Рецептор, воспринимающий раздражение, передает нервный импульс к телу первого нейрона (афферентного), который находится в спинномозговом узле или чувствительном узле черепного нерва. Нервный импульс следует в спинной (серое вещество) или головной (ядра головного мозга) мозг и образует синапс с телом вставочного нейрона, который контактирует с эфферентным нейроном. Аксон этого нейрона выходит из спинного или головного мозга в составе передних (двигательных) корешков спинномозгового или черепного нервов и направляется к рабочему органу. В сложной рефлекторной дуге между афферентными и эфферентными нейронами располагаются два и более вставочных нейрона.

ВНД ребенка от рождения до 7 лет.Ребенок рождается с набором безусловных рефлексов, рефлекторные дуги которых начинают формироваться на 3-м месяце внутриутробного развития. Тогда у плода появляются первые сосательные и дыхательные движения, а активное движение плода наблюдается на 4-5-м месяце. К моменту рожденияу ребенка формируется большинство врожденных рефлексов, которые обеспечивают ему нормальное функционирование вегетативной сферы.

Возможность простых пищевых условных реакций возникает уже на 1-2-е сутки,ак концу первого месяца развития образуются условные рефлексы с двигательного анализатора и вестибулярного аппарата.

Со 2-го месяца жизниобразуются слуховые, зрительные и тактильные рефлексы, а к 5-му месяцу развития у ребенка вырабатываются все основные виды условного торможения. Большое значение в совершенствовании условно-рефлекторной деятельности имеет обучение ребенка. Чем раньше начато обучение, т. е. выработка условных рефлексов, тем быстрее идет их формирование впоследствии.

К концу 1-го года развитияребенок относительно хорошо различает вкус пищи, запахи, форму и цвет предметов, различает голоса и лица. Значительно совершенствуются движения, некоторые дети начинают ходить. Ребенок пытается произносить отдельные слова, и у него формируются условные рефлексы на словесные раздражители. Следовательно, уже в конце первого года полным ходом идет развитие второй сигнальной системы и формируется ее совместная деятельность с первой.

На 2-м году развитияребенка совершенствуются все виды условно-рефлекторной деятельности, и продолжается формирование второй сигнальной системы, значительно увеличивается словарный запас; раздражители или их комплексы начинают вызывать словесные реакции. Уже у двухгодовалого ребенка слова приобретают сигнальное значение.

2-й и 3-й год жизниотличаются живой ориентировочной и исследовательской деятельностью. Этот возраст ребенка характеризуется «предметным» характером мышления, т. е. решающим значением мышечных ощущений. Эта особенность в значительной степени связана с морфологическим созреванием мозга, так как многие моторные корковые зоны и зоны кожно-мышечной чувствительности уже к 1-2 годам достигают достаточно высокой функциональной полноценности. Основным фактором, стимулирующим созревание этих корковых зон, являются мышечные сокращения и высокая двигательная активность ребенка.

Период до 3-х летхарактеризуется также легкостью образования условных рефлексов на самые различные раздражители. Примечательной особенностью 2-3-летнего ребенка является легкость выработки динамических стереотипов – последовательных цепей условно-рефлекторных актов, осуществляющихся в строго определенном, закрепленном во времени порядке. Динамический стереотип это следствие сложной системной реакции организма на комплекс условных раздражителей (условный рефлекс на время – прием пищи, время сна и др.).

Возраст от 3-х до 5-тилет характеризуется дальнейшим развитием речи и совершенствованием нервных процессов (увеличивается их сила, подвижность и уравновешенность), процессы внутреннего торможения приобретают доминирующее значение, но запаздывательное торможение и условный тормоз вырабатываются с трудом.

К5-7 годамеще более повышается роль сигнальной системы слов и дети начинают свободно говорить. Это обусловлено тем, что только к семи годам постнатального развития функционально созревает материальный субстрат второй сигнальной системы – кора больших полушариев.

ВНД детей от 7 до 18 лет.Младший школьный возраст(с 7 до 12 лет) – период относительно «спокойного» развития ВНД. Сила процессов торможения и возбуждения, их подвижность, уравновешенность и взаимная индукция, а также уменьшение силы внешнего торможения обеспечивают возможности широкого обучения ребенка. Но только при обучении письму и чтению слово становится предметом сознания ребенка, все, более отдаляясь от связанных с ним образов, предметов и действий. Незначительное ухудшение процессов ВНД наблюдается только в 1-м классе в связи с процессами адаптации к школе.

Особое значение для педагогов имеет подростковый(с 11-12 до 15-17 лет) период. В это время нарушается уравновешенность нервных процессов, большую силу приобретает возбуждение, замедляется прирост подвижности нервных процессов, значительно ухудшается дифференцировка условных раздражителей. Ослабляется деятельность коры, а вместе с тем и второй сигнальной системы. Все функциональные изменения приводят к психической неуравновешенности и конфликтности подростка.

Старший школьный возраст(15-18 лет) совпадает с окончательным морфофункциональным созреванием всех систем организма. Повышается роль корковых процессов в регуляции психической деятельности и функций второй сигнальной системы. Все свойства нервных процессов достигают уровня взрослого человека, т. е. ВНД старших школьников становится упорядоченной и гармоничной. Таким образом, для нормального развития ВНД на каждом отдельном этапе онтогенеза необходимо создание оптимальных условий.

8 вопрос

Рефлекторная дуга

Рефлекторный принцип работы нервной системы - фотография 14 - изображение 14

www.Grandars.ru » Медицина » Физиология

Рефлекторный принцип функционирования ЦНС

Как уже отмечалось, даже отдельно взятый нейрон обладает способностью воспринимать, анализировать, интегрировать множество поступающих к нему сигналов и отвечать на них адекватной реакцией. Еще большими возможностями в восприятии, анализе и интеграции разнообразных сигналов обладают нервные центры и центральная нервная система в целом. Нервные центры ЦНС способны отвечать на воздействия не только простыми, автоматизированными ответными реакциями, но и принимать решения, обеспечивающие осуществление тонких приспособительных реакций при изменении условий существования.

В основе функционирования нервной системы лежит рефлекторный принцип, или осуществление рефлекторных реакций.

Рефлексом называют стереотипную ответную реакцию организма на действие раздражителя, осуществляющуюся при участии центральной нервной системы.

Из этого определения вытекает, что не все ответные реакции можно относить к рефлекторным. Например, каждая клетка, обладая раздражимостью, способна отвечать на действие раздражителей изменением метаболизма. Но эту реакцию мы не назовем рефлекторной. Рефлекторные реакции возникли у живых организмов, располагающих нервной системой, и осуществляются при участии нейронной цепи, получившей название рефлекторной дуги.

Элементы рефлекторной дуги

Рефлекторная дуга включает пять звеньев.

Начальным звеном является сенсорный рецептор, образованный нервным окончанием чувствительного нейрона или чувствительной клеткой сенсоэпителиального происхождения.

В состав дуги кроме рецептора входят: афферентный (чувствительный, центростремительный) нейрон, ассоциативный (или вставочный) нейрон, эфферентный (двигательный, центробежный) нейрон и эффектор.

Эффектором могут быть мышца, на волокнах которой заканчивается синапсом аксон эфферентного нейрона, экзо- или эндокринная железа, иннервируемые эфферентным нейроном. Вставочных нейронов может быть один или много или ни одного. Эфферентный и вставочный нейроны обычно располагаются в нервных центрах.

Рефлекторный принцип работы нервной системы - фотография 15 - изображение 15

Таким образом, в образовании рефлекторной дуги участвует как минимум три нейрона. Исключение составляет лишь один вид рефлексов - так называемые «сухожильные рефлексы», рефлекторная дуга которых включает только два нейрона: афферентный и эфферентный. При этом чувствительный ложноуниполярный нейрон, тело которого располагается в спинномозговом узле, может образовывать окончаниями дендритов рецепторы, его аксон в составе задних корешков спинного мозга входит в задние рога спинного мозга и, проникая в передние рога серого вещества, формирует синапс на теле эфферентного нейрона. Пример рефлекторной дуги 3-нейронного оборонительного (сгибательного) рефлекса, вызываемого болевым воздействием на рецепторы кожи, представлен на рис. 1.

Нервные центры большинства рефлексов располагаются (рефлексы замыкаются) в головном и спинном мозге. Множество рефлексов замыкается вне центральной нервной системы во внеорганных ганглиях автономной нервной системы или в ее интрамуральных ганглиях (например, сердца или кишечника).

Область сосредоточения рецепторов, при воздействии на которые запускается определенный рефлекс, называют рецепторным (рецептивным) полем этого рефлекса.

Рефлекторный принцип работы нервной системы - фото 16 - изображение 16

Рис. 1. Нейронная цепь (луга) болевого оборонительного рефлекса

Рефлексы (рефлекторные реакции) подразделяют на безусловные и условные.

Безусловные рефлексы являются врожденными, проявляются при воздействии специфического раздражителя на строго определенное рецепторное поле. Они присущи представителям данного вида живых существ.

Условные рефлексы являются приобретенными - вырабатываются на протяжении всей жизни индивидуума. Подробная характеристика их будет дана при изучении высших интегративных функций мозга.

Рефлекторный принцип работы нервной системы - фото 17 - изображение 17

Рис. Схема рефлекторной дуги

По биологической значимости рефлекторной реакции выделяют: пищевые, оборонительные, половые, ориентировочные, статокинетические рефлексы.

По типу рецепторов, с которых вызывается рефлекс, различают: эстероцептивные, интероцептивные, проприоцептивные рефлексы. Среди последних выделяют сухожильные и миотатические рефлексы.

По участию в осуществлении рефлекса соматического или автономных отделов ЦНС и эффекторных органов различают соматические и автономные рефлексы.

Соматическими называют рефлексы, если эффектор и рецептивное ноле рефлекса относятся к соматическим структурам.

Автономными называют рефлексы, эффектором в которых являются внутренние органы, а эфферентная часть рефлекторной дуги образована нейронами автономной нервной системы. Примером автономного рефлекса является рефлекторное замедление сердечной деятельности, вызванное воздействием на рецепторы желудка. Примером соматического рефлекса является сгибание руки в ответ на болевое раздражение кожи.

По уровню ЦНС, на котором замыкается рефлекторная дуга, выделяют спинальные, бульбарные (замыкающиеся в продолговатом мозге), мезенцефальные, таламические, корковые рефлексы.

По количеству нейронов рефлекторной дуги рефлекса и числу центральных синапсов: двухнейронные, трехнейронные, мультинейронные; моносинантические, полисинаптические рефлексы.

Рефлекс как основная форма деятельности нервной системы

Первые представления о рефлекторном принципе деятельности нервной системы, т.е. о принципе «отражения», и само понятие «рефлекс» были введены Р. Декартом в XVII в. В силу недостаточности представлений о строении и функции нервной системы его представления были неверными. Важнейшим моментом развития рефлекторной теории стал классический труд И.М. Сеченова (1863) «Рефлексы головного мозга». В нем впервые был провозглашен тезис о том, что все виды сознательной и бессознательной жизни человека представляют собой рефлекторные реакции. Рефлекс как универсальная форма взаимодействия организма и среды есть реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием ЦНС.

Классификация рефлексов:

  • по происхождению: безусловные - врожденные, видовые рефлексы и условные - приобретенные в течение жизни;
  • по биологическому значению: защитные, пищевые, половые, познотонические, или рефлексы положения тела в пространстве;
  • по расположению рецепторов: экстерорецептивные - возникают в ответ на раздражение рецепторов поверхности тела, интерорецепторные или висцерорецепторные - возникают в ответ на раздражение рецепторов внутренних органов, проприорецептивные - возникают в ответ на раздражение рецепторов мышц, сухожилий и связок;
  • по месту расположения нервного центра: спинномозговые (осуществляются с участием нейронов спинного мозга), бульварные (с участием нейронов продолговатого мозга), мезенцефальные (с участием среднего мозга), диэнцефальные (с участием промежуточного мозга) и кортикальные (с участием нейронов коры больших полушарий головного мозга).

Строение рефлекторной дуги

Морфологической структурой любого рефлекса является рефлекторная дуга - путь нервного импульса от рецептора через ЦНС к рабочему органу. Время от момента нанесения раздражения до появления ответной реакции называют временем рефлекса, а время, в течение которого импульс проходит через ЦНС, - центральным временем рефлекса.

Согласно представлениям И.П. Павлова, рефлекторная дуга состоит из трех частей: анализаторной (афферентной), контактной (центральной) и исполнительной (эфферентной). С современной точки зрения рефлекторная дуга состоит из пяти основных звеньев (рис. 2).

Анализаторная часть состоит из рецептора и афферентного пути. Рецептор - это нервное окончание, которое отвечает за восприятие энергии раздражителя и переработку его в нервный импульс.

Классификация рецепторов:

  • по месту расположения: экстерорецепторы - рецепторы слизистых оболочек и кожи, интерорецепторы - рецепторы внутренних органов, проприорецепторы - рецепторы, которые воспринимают изменения мышц, связок и сухожилий;
  • по воспринимаемой энергии: терморецепторы (на коже, языке), барорецепторы - воспринимают изменение давления (в дуге аорты и каротидном синусе), хеморецепторы - реагируют на химический состав (в желудке, кишечнике, аорте), болевые рецепторы (на коже, надкостнице, брюшине), фоторецепторы (на сетчатке), фонорецепторы (во внутреннем ухе).

Афферентный (чувствительный, центростремительный) путь представлен чувствительным нейроном, отвечает за передачу нервного импульса от рецептора к нервному центру.

Рефлекторный принцип работы нервной системы - изображение 18 - изображение 18

Рис. 2. Строение рефлекторной дуги

Центральная часть представлена нервным центром, который образован вставочными нейронами и находится в спинном и головном мозге. Количество вставочных нейронов может быть различным, это определяется сложностью рефлекторного акта. Нервный центр обеспечивает анализ, синтез полученной информации и принимает решение.

Исполнительная часть состоит из эфферентного пути и эффектора. Эфферентный (двигательный, центробежный) путь представлен двигательным нейроном, отвечает за передачу нервного импульса от нервного центра к эффектору, или рабочему органу. Эффектором может быть мышца, которая будет сокращаться, или железа, выделяющая свой секрет.

Наиболее простая рефлекторная дуга состоит из двух нейронов. В ней нет вставочного нейрона, аксон афферентного нейрона непосредственно контактируете телом эфферентного нейрона. Особенностью двухнейронной дуги является то, что рецептор и эффектор рефлекса находятся в одном и том же органе. Двухнейронную рефлекторную дугу имеют сухожильные рефлексы (ахиллов, коленный). Сложные рефлекторные дуги имеют много вставочных нейронов.

Рефлекторные дуги, в которых возбуждение проходит через один синапс, называется моносиноптическими, а те, в которых возбуждение последовательно проходит более чем через один синапс, - полисинаптическими.

Рефлекторный акт не заканчивается ответной реакцией организма на раздражение. Каждый эффектор имеет свои рецепторы, которые возбуждаются, нервные импульсы по чувствительному нерву идут в ЦНС и «сообщают» об осуществленной работе. Связь рецепторов рабочего органа с ЦНС называют обратной связью. Обратная связь обеспечивает сравнение прямой и обратной информации, осуществляет контроль и коррекцию ответной реакции. Рефлекторная дуга и обратная связь образуют рефлекторное кольцо. Поэтому правильнее говорить не о рефлекторной дуге, а о рефлекторном кольце (рис. 3).

Рефлекторный принцип работы нервной системы - фотография 19 - изображение 19

Рис. 3. Строение рефлекторного кольца

Принципы рефлекторной деятельности

Как установил И.П. Павлов, любой рефлекторный акт, независимо от его сложности, подчиняется трем универсальным принципам рефлекторной деятельности:

  • принцип детерминизма, или причинной обусловленности. Рефлекторный акт может осуществляться только при действии раздражителя. Раздражитель, действующий на рецептор, - причина, а рефлекторный ответ - следствие;
  • принцип структурной целостности. Рефлекторный акт может быть осуществлен только при условии структурной и функциональной целостности всех звеньев рефлекторной дуги (рефлекторного кольца).

Структурная целостность рефлекторной дуги может быть нарушена при механическом повреждении какой-либо ее части - рецептора, афферентных или эфферентных нервных путей, участков ЦНС, рабочих органов. Например, в результате ожога слизистой носа с повреждением обонятельного эпителия отсутствует задержка дыхания и не изменяется его глубина при вдыхании веществ с резким запахом; повреждение в продолговатом мозге дыхательного центра при переломе основания черепа может повлечь остановку дыхания. Если рассечь какой-либо нерв, иннервирующий поперечно-полосатую мускулатуру, то мышечные движения будут невозможны.

Нарушение функциональной целостности может быть связано с блокадой проведения нервных импульсов в структуре рефлекторной дуги. Так, многие применяемые для местного обезболивания вещества блокируют передачу нервного импульса от рецептора по нервному волокну. Поэтому, например, после местной анестезии манипуляции стоматолога не вызывают у больного ответной двигательной реакции. При применении общей анестезии возбуждение блокируется в центральной части рефлекторных дуг.

Функциональная целостность структуры рефлекса нарушается и в случае возникновения процессов торможения (безусловного или условного) в центральной части рефлекторной дуги. В этом случае также наблюдается отсутствие или прекращение ответной реакции на раздражитель. Например, ребенок прекращает рисовать, увидев новую яркую игрушку;

Рефлекторный принцип работы нервной системы - изображение 20 - изображение 20

Рис. Рефлекторная дуга вегетативного (справа) и соматического (слева) рефлексов: 1 - рецепторы; 2 - афферентный нейрон; 3 - вставочный нейрон; 4 - афферентный нейрон; 5 - рабочий орган

Рефлекторный принцип работы нервной системы - фото 21 - изображение 21

Рис. Схема многоуровневой (многоэтажной) рефлекторной дуги по Э.А. Асратяну: А - афферентный сигнал; Э - эфферентный ответ; I - спинальный; II - бульварный; III - мезэнцефалический; IV - диэнцефалический; V - корковый

Принцип анализа и синтеза. Любой рефлекторный акт осуществляется на основе процессов анализа и синтеза. Анализ - это биологический процесс «разложения» раздражителя, выявление его отдельных признаков и свойств. Анализ раздражителя начинается уже в рецепторах, но полностью осуществляется в ЦНС, в том числе наиболее тонко - в коре больших полушарий. Синтез - это биологический процесс обобщения, познания раздражителя как целостности на основе выявления взаимосвязи его свойств, выделенных при анализе. Синтез завершается выбором ответной реакции организма, адекватной действию раздражителя. Пример воздействия, нарушающего аналитико-синтетическую деятельность, - употребление алкоголя: как известно, в состоянии опьянения у человека нарушается координация движений, наблюдается неадекватная оценка окружающей действительности и т.д.

Рефлекторный принцип деятельности ЦНС

Рефлекторный принцип работы нервной системы - фото 22 - изображение 22

Классификация нейронов

I. По строению (количеству отростков) (рис. 2):

1. Униполярные (одноотростчатые) – это клетки, от тела которых отходит только один отросток. В нервной системе человека почти не встречаются.

2. Биполярные (двухотростчатые) – это клетки, которые имеют один аксон и один дендрит. Они характерны для зрительной, слуховой, обонятельной сенсорных систем.

3. Мультиполярные (многоотростчатые) – мелкие мультиполярные нейроны являются ассоциативными, средние и крупные – мультиполярными, пирамидные нейроны – двигательными и эффекторными; имеют один аксон и множество дендритов. К такому типу нейронов принадлежит большинство нейронов ЦНС. Исходя из особенностей формы этих клеток их делят на веретенообразные, корзинчатые, звездчатые, пирамидные.

Рефлекторный принцип работы нервной системы - фото 23 - изображение 23

Рис. 2. Нейроны:

а – униполярный нейрон; б– биполярный нейрон;в – псевдоуниполярный нейрон; г – мультиполярный

4. Псевдоуниполярные (ложноодноотростчатые) – отросток как бы один, но он раздваивается. Такие клетки всегда чувствительные и всегда находятся вне ЦНС в чувствительных ганглиях. Для этих клеток характерна определенная локализация. Они принадлежат неспецифическим сенсорным модальностям (болевая, температурная, тактильная, проприоцептивная).

II. В зависимости от отдела ЦНС различают нейроны соматической и вегетативной нервной системы.

III. По виду медиатора, выделяющегося в окончаниях аксонов, различают нейроны адренергические, холинергические, дофаминергические и т.д.

IV. По влиянию на другую клетку – возбуждающие, тормозные.

V. По специфичности воспринимаемой сенсорной информации нейроны высших отделов ЦНС могут быть мономодальные, бимодальные, полимодальные.

VI. По активности – фоновоактивные и «молчащие». Фоновоактивные нейроны играют важную роль в поддержании тонуса ЦНС. «Молчащие» нейроны активируются только при действии раздражителей.

VI. По функции выделяют три типа нейронов:

1) чувствительные;

2) вставочные;

3) двигательные.

VII. Центральные и периферические (в чувствительных и вегетативных ганглиях).

Тела чувствительных нейронов всегда находятся вне ЦНС, в чувствительных ганглиях – спинномозговых или черепных нервах. Дендриты чувствительных нейронов оканчиваются чувствительными нервными окончаниями – рецепторами.

Двигательные нейроны посылают импульсы к рабочему органу. Двигательный нейрон обеспечивает ответную реакцию на раздражение (например, сокращается мышца).

Вставочные нейроны обеспечивают передачу нервного импульса с чувствительного нейрона на двигательный нейрон. И двигательные, и вставочные нейроны находятся в пределах ЦНС.

Нейроглии

Помимо нейронов в ЦНС имеются глиальные клетки (нейроглии). Термин «глия» означает «связывающее» и отражает роль нейроглии как посредника между кровеносными сосудами и нейронами. В ЦНС человека количество глиальных клеток на порядок больше, чем количество нейронов и составляет около 50% объема ЦНС. Величина мембранного потенциала глиальных клеток больше (-90 мВ), чем у нейрона (-70 мВ), поэтому повышение концентрации ионов К+ во внеклеточной среде приводит к деполяризации глиальной мембраны раньше, чем нервной. Глиальная мембрана является активным калиевым электродом. Она не способна генерировать потенциал действия, поэтому возникают только локальные потенциалы. Между клетками глии существуют участки низкоомной связи, которые обеспечивают обмен ионов и мелких молекул. Клетки нейроглии заполняют промежутки между нервными клетками. В мозге нет соединительной ткани, вместо нее – нейроглия. Периферические аксоны (находящиеся за пределами ЦНС) также окружены оболочкой из глиальных клеток. Они способны к делению в течение всей жизни. С возрастом количество нейронов уменьшается, а нейроглий – увеличивается.

Существует несколько типов нейроглии. В ЦНС они представлены астроцитами и олигодендроцитами, а в периферической нервной системе – шванновскими клетками и ган­глионарными глиоцитами. Кроме того, центральными глиальными клетками считаются клетки микроглии и клетки эпендимы.

Функции клеток глии:

1) опорная – в цитоплазме астроцитов находятся глиальные филаменты, выполняющие в ткани ЦНС механическую опорную функцию;

2) защитная (цитокинез, фагоцитоз) – в случае повреждения отростки астроцитов, содержащие глиальные филаменты, подвергаются гипертрофии и формируют глиальный рубец. При повреждении мозговой ткани микроглия наряду с проникающими в ЦНС из кровотока фагоцитами способствует удалению продуктов клеточного распада;

3) являются трофическим аппаратом;

4) регулируют определенную концентрацию ионов кальция и калия в межклеточном пространстве;

5) активно поглощают нейромедиаторы;

6) обеспечивают электрическую изоляцию аксонов путем формирования миелиновой оболочки.

Глиальные клетки выполняют в нервной системе множество еще не совсем изученных функций.

Классификация рецепторов

I. По локализации выделяют следующие виды рецепторов:

1) экстерорецепторы – располагаются в коже и слизистых оболочках и воспринимают внешнее раздражение (терморецепторы, рецепторы осязания (тактильные), давления, болевые). К ним также относятся чувствительные элементы органов чувств, например, палочки и колбочки сетчатки;

2) рецепторы, заложенные в аппарате движения (в мышцах, сухожилиях, суставных капсулах и связках, надкостнице, фасциях), называются проприорецепторами (глубокими рецепторами). Они воспринимают чувство веса, давления, вибрации, состояние мышц;

3) интерорецепторы – находятся в стенках внутренних органов и сосудов. Воспринимают химический состав определенных веществ, степень наполнения внутренних органов;

4) рецепторы специализированных органов чувств. Отвечают за восприятие зрительных, слуховых, обонятельных, вкусовых раздражений и чувство равновесия.

II. По строению выделяют следующие виды рецепторов:

1) свободные нервные окончания: воспринимают болевые импульсы;

2) инкапсулированные: воспринимают тактильные, температурные и проприорецептивные раздражения;

3) первичночувствующие клетки: воспринимают зрительные, слуховые, вестибулярные и вкусовые раздражения.

III. По природе адекватного раздражителя:

– механорецепторы;

– хеморецепторы;

– фоторецепторы;

– терморецепторы;

– осморецепторы;

– волюморецепторы и т.д.

IV. По характеру ощущений:

– зрительные;

– слуховые;

– вкусовые;

– тактильные;

– температурные;

– болевые;

– положения тела в пространстве.

V. По числу воспринимаемых раздражителей:

– мономодальные;

– полимодальные.

Участок тела, содержащий рецепторы, при раздражении которых возникает определенный рефлекс, называется рецептивным полем рефлекса или рефлексогенной зоной. Любой рефлекс можно вызвать только с определенного рецептивного поля. Например, коленный рефлекс (разгибание колена) возникает при ударе по сухожилию ниже надколенника.

Любое раздражение, воспринимаемое рецептором, кодируется (преобразуется) в нервный импульс и направляется по афферентным волокнам в ЦНС. В центре информация перерабатывается, отбирается, передается на двигательные волокна, которые посылают возбуждение к рабочим органам. В результате вызывают тот или иной приспособительный акт – движение или секрецию.

Во время ответной реакции возбуждаются рецепторы рабочего органа и от них в ЦНС поступают импульсы, т.е. информация о достигнутом результате. Афферентные импульсы осуществляют обратную связь, либо усиливают и уточняют реакцию, если она не достигла цели, либо прекращают ее, т.е. работают по принципу обратной связи.

Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса. Если лапку лягушки опустить в слабый раствор серной кислоты, возникнет оборонительный рефлекс – лапка отдернется. Однако если снять кожу и тем самым удалить кожные рецепторы, то серная кислота не окажет воздействия.

Подобное можно наблюдать при разрушении любого другого звена: ЦНС, чувствительных или двигательных нервных волокон. Самое сильное раздражение не вызовет ответной реакции, нервная деятельность будет отсутствовать.

Время рефлекса.Время, прошедшее от момента нанесения раздражения до ответа на него, называется временем рефлекса. Это время слагается из времени, необходимого для возбуждения рецепторов, проведения возбуждения по чувствительным волокнам ЦНС, двигательным волокнам и периода возбуждения рабочего органа. На проведение возбуждения через нервные центры уходит большая часть времени – центральное время рефлекса. Возбуждение проводится через синапсы, а в синапсах ЦНС происходит замедление проведения возбуждения. Чем меньше нейронов входит в состав рефлекторной дуги, тем короче время рефлекса. Простые сухожильные рефлексы, имеющие моносинаптическую (двухнейронную) рефлекторную дугу, наиболее быстрые, так как возбуждение проходит через один синапс. Время сложных вегетативных рефлексов дольше. Время рефлекса зависит от силы раздражения и возбудимости ЦНС. При сильном раздражении оно короче, при снижении возбудимости время рефлекса увеличивается, при повышении возбудимости – уменьшается.

Классификация рефлексов

I. По характеру связи между нейронами различают:

1. Безусловные (врожденные) рефлексы. Они передаются по наследству, присущи каждому биологическому виду. Их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни.

2. Условные (рефлекторные реакции, приобретаемые на протяжении индивидуальной жизни человека, например, протягивание руки к выключателю). Они возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга.

II. По расположению рецепторов, раздражение которых вызывает данный рефлекторный акт:

1) экстерорецептивный рефлекс – раздражение рецепторов внешней поверхности тела (зрительные, обонятельные и др.);

2) висцеро- или интерорецептивный рефлекс – возникающий при раздражении рецепторов внутренних органов и сосудов (хемо-, баро-, осмо-);

3) проприорецептивный (миотатический) рефлекс – раздражение рецепторов скелетных мышц, суставов, сухожилий.

III. По биологическому значению:

1. Пищевые:

– рефлекторный акт глотания;

– жевания;

– сосания;

– слюноотделения;

– секреции желудочного и поджелудочного сока и др.

2. Оборонительные – реакции устранения от повреждающих и болевых раздражений.

3. Рефлексы сохранения гомеостаза:

– рефлекс терморегуляции;

– дыхательный рефлекс;

– сердечный;

– сосудистые, способствующие сохранению постоянства артериального давления и др.

4. Позно-тонические (рефлексы положения тела в пространстве).

5. Локомоторные (рефлексы передвижения тела в пространстве).

6. Половые – рефлексы, связанные с осуществлением полового акта; в эту же группу можно отнести и так называемые родительские рефлексы, связанные с выкармливанием и выхаживанием потомства.

7. Стато-кинетические и локомоторные – рефлекторные реакции поддержания определенного положения и передвижения тела в пространстве.

8. Ориентировочный рефлекс – рефлекс на новизну. Он возникает в ответ на любое достаточно быстро происходящее колебание окружающей среды и выражается внешне в настораживании, прислушивании к новому звуку, обнюхивании, повороте глаз и головы, а иногда и всего тела в сторону появившегося светового раздражителя и т.п. Осуществление этого рефлекса обеспечивает лучшее восприятие действующего агента и имеет важное приспособительное значение.

IV. По эффекторам:

1. Соматические (скелетная мускулатура).

2. Вегетативные (гладкая мускулатура или железы), т.е. эффектором являются внутренние органы, эфферентная часть сформирована вегетативными нейронами.

V. По уровню замыкания рефлекторной дуги в ЦНС выделяют (рис. 4):

1. Спинальные (рефлекторные дуги замыкаются в спинном мозге). Например, сгибательный рефлекс – укол или нанесение слабого раствора кислоты на лапку лягушки вызывает рефлекторное сокращение мышц этой лапки, которая сгибается и устраняется от раздражителя;

– рефлекс натирания – прикладывание к коже боковой поверхности тела лягушки кусочка фильтровальной бумаги, смоченной кислотой, влечет за собой сокращение приводящих мышц лапки той же стороны, потирание раздраженного места и сбрасывание бумаги;

– рефлекс почесывания – потирание кожи на боку собаки влечет за собой притягивание задней лапы со стороны раздражения к боковой поверхности туловища и ритмические сгибательные движения почесывания;

– коленный рефлекс – при легком коротком ударе по сухожилию четырехглавой мышцы бедра под коленной чашечкой происходит резкое разгибание ноги в колене;

– ахиллов рефлекс – при ударе по ахиллову сухожилию происходит резкое сокращение икроножной мышцы;

– подошвенный рефлекс – раздражение кожи подошвенной части ноги взрослого человека вызывает рефлекторное сгибание стопы и пальцев.

2. Бульбарные (замыкающие в продолговатом мозге).

Например, сосательный рефлекс – прикосновение к губам грудного младенца ведет к появлению ритмических сосательных движений; а также корнеальный рефлекс – прикосновение к роговице глаза ведет к смыканию век.

3. Мезэнцефальные (участвуют нейроны среднего мозга).

Например, зрачковый рефлекс – освещение ярким светом глаза вызывает сужение зрачка

4. Диэнцефальные (нейроны промежуточного мозга).

Рефлекторный принцип работы нервной системы - фотография 24 - изображение 24

Рис. 4. Уровнирефлекторной дуги

5. Корковый (для которого необходимы нейроны коры головного мозга).

VI. По количеству нейронов, участвующих в замыкании рефлекторной дуги:

1) моносинаптические – состоят из двух нейронов (чувствительного и двигательного), импульсы проходят через один синапс;

2) полисинаптические – состоят из трех и более нейронов (чувствительный, двигательный, вставочный), импульсы проходят через несколько синапсов.

VII. По характеру ответной реакции, в зависимости от того, какие органы в ней участвуют:

– моторные, или двигательные рефлексы, – исполнительным органом служат мышцы;

– секреторные рефлексы – заканчиваются секрецией желез;

– сосудодвигательные рефлексы – проявляющиеся в сужении или расширении кровеносных сосудов.

По характеру рефлексов судят о состоянии различных отделов нервной системы. При исследовании рефлексов определяют их уровень, равномерность, асимметрию; при повышенном уровне отмечают рефлексогенную зону. При описании рефлексов применяют следующие градации: живые рефлексы; гипорефлексия; гиперрефлексия (с расширенной рефлексогенной зоной); арефлексия (отсутствие рефлексов).

Сухожильные и надкостничные рефлексы вызываются с помощью короткого удара по сухожилию или надкостнице и имеют важное диагностическое значение в неврологической практике. Рефлекторная реакция проявляется в виде резкого сокращения мышц.

Эта классификация приемлема для простых рефлексов, направленных на объединение функций внутри организма. При сложных рефлексах, в которых участвуют нейроны, находящиеся в высших отделах ЦНС, как правило, в осуществление рефлекторной реакции вовлекаются различные исполнительные органы, в результате чего происходит изменение соотношения организма с внешней средой, а также его поведения.

Нервный центр

С точки зрения анатомии нервный центр (ядро) – совокупность близко расположенных нейронов на определенном уровне мозга, объединенных общими морфологическими особенностями. Например, в продолговатом мозге – центры дыхания, кровообращения и другие.

С точки зрения физиологии нервный центр – это функционально связанная совокупность нейронов, расположенных на различных уровнях ЦНС и обеспечивающих регуляцию той или иной функции или осуществление целостной реакции организма. Например, нервный центр, регулирующий дыхание, имеет свое представительство в разных отделах ЦНС. Например, кора больших полушарий регулирует произвольную регуляцию дыхания; лимбическая кора – связь эмоций и дыхания; гипоталамус – приспособление дыхания к уровню обменных процессов и т.д.

Каждый рефлекс имеет свой центр: существует центр коленного рефлекса, центр локтевого рефлекса, мигательного; есть сердечно-сосудистый, дыхательный, пищевой центры, центры сна и бодрствования, голода и жажды и т.д. В целом организме при формировании сложных адаптивных процессов происходит функциональное объединение нейронов, расположенных на различных уровнях ЦНС, т.е. сложное объединение большого количества центров.

Объединение нервных центров (ядер) между собой осуществляется проводящими путями ЦНС с помощью нейро-нейрональных (межнейронных) синапсов. Существует три типа соединения нейронов: последовательное, дивергентное и конвергентное.

Нервные центры обладают рядом характерных функциональных свойств, которые во многом обусловлены этими тремя типами нейронных сетей, а также свойствами межнейронных синапсов.

Свойства нервных центров

Нервные центры обладают рядом общих свойств, что во многом определяется структурой и функцией синаптических образований.

1. Возбуждение в нервных центрах распространяется односторонне – от рецептора к эффектору. Одностороннее проведение связано с тем, что связь между нейронами осуществляется в основном с помощью синапсов, что обусловливается свойством химических синапсов односторонне проводить возбуждение от пресинаптической мембраны к постсинаптической, на которой имеются специфические структуры (рецепторы). Если перерезать передние и задние корешки спинного мозга и раздражать их, то при раздражении задних (чувствительных корешков) с помощью осциллографа можно зарегистрировать возникновение потенциалов на передних корешках, а если раздражать передние, то на задних корешках потенциалы не регистрируются.

2. Центральная задержка. Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну. Это обусловлено замедленным проведением возбуждения через синапсы (синаптическая задержка), которых в ядре много. Синаптическая задержка включает в себя время выделения медиатора из везикул, время трансфузии его через синаптическую щель к постсинаптической мембране и время генерации постсинаптического потенциала.

Центральное время рефлекса – самое короткое у моносинаптического рефлекса, например, время центрального торможения коленного рефлекса – 3 мс. Чем больше нейронов входит в рефлекторную дугу (тем больше синапсов), тем больше время рефлекса.

3. В нервных центрах осуществляется суммация возбуждений. Суммация – сложение допороговых импульсов. Основана на свойстве каждого нейрона в центре к суммации как возбуждения, так и торможения. Различают два вида суммации.

Рефлекторный принцип работы нервной системы - фотография 25 - изображение 25

Временная, или последовательная, если импульсы возбуждения приходят к нейрону по одному и тому же пути через один синапс с интервалом меньшим, чем время полной реполяризации постсинаптической мембраны (рис. 5). В этих условиях локальные токи на постсинаптической мембране воспринимающего нейрона суммируются и доводят ее деполяризацию до уровня Ек, достаточного для генерации нейроном потенциала действия. Известно, что один подпороговый афферентный стимул не вызывает ответной рефлекторной реакции, а создает в ЦНС местное возбуждение. При действии серии подпороговых импульсов выделяется достаточное количество медиатора для того, чтобы деполяризация достигла критического уровня и возникло распространяющееся возбуждение.

Данная суммация называется временной, потому что на нейрон в течение некоторого промежутка времени приходит серия импульсов (раздражений). Последовательной она называется, потому что реализуется в последовательном соединении нейронов.

Пространственная, или одновременная, – наблюдается в том случае, когда импульсы возбуждения поступают к нейрону одновременно через разные синапсы (рис. 6).

Пространственной данная суммация называется, потому что раздражитель действует на некоторое пространство рецептивного поля, т.е. несколько (минимум два) рецепторов разных участков рецептивного поля. Тогда как временная суммация может реализоваться при действии серии раздражителей на один и тот же рецептор. Одновременной она называется, потому что информации к нейрону приходят одновременно по нескольким (минимум два) каналам связи, т.е. одновременная суммация реализуется конвергентным соединением нейронов.

Рефлекторный принцип работы нервной системы - фото 26 - изображение 26

Рис. 6. Пространственная суммация в результате одновременнонаносимых раздражений:

а – передача возбуждения с одного аксона (уменьшение мембранного потенциала)

б – передача возбуждения с трех аксонов и генерация потенциала действия

Пространственную суммацию, как и последовательную, можно объяснить тем, что при подпороговом раздражении, пришедшем по одному афферентному пути, выделяется недостаточное количество медиатора для того, чтобы вызвать деполяризацию мембраны до критического уровня. Если же импульсы приходят одновременно несколькими афферентным путям к одному и тому же нейрону, в синапсах выделяется достаточное количество медиатора, необходимого для пороговой деполяризации и возникновения потенциала действия.

4. Трансформация ритма возбуждения – изменение количества импульсов возбуждения, выходящих из нервного центра, по сравнению с числом импульсов, приходящих к нему.

Различают два вида трансформации:

1) понижающая, в основе которой лежит явление суммации возбуждений, когда в ответ на несколько пришедших допороговых возбуждений к нервной клетке в нейроне возникает только одно пороговое возбуждение;

2) повышающая, в ее основе лежат механизмы умножения (мультипликации), способные резко увеличить количество импульсов возбуждения на выходе.

5. Рефлекторное последействие заключается в том, что рефлекторная реакция заканчивается позже прекращения действия раздражителя (рис. 7).

Рефлекторный принцип работы нервной системы - изображение 27 - изображение 27

Рис. 7. Кольцевые связи в нервном центре (Лоренто де Но).

Стрелками показано направление движения импульсов

Это явление обусловлено двумя причинами:

1) длительной следовой деполяризацией мембраны нейрона на фоне прихода мощной афферентации (сильной чувствительной импульсации), вызывающей выделение большого количества (квантов) медиатора, что обеспечивает возникновение нескольких потенциалов действия на постсинаптической мембране и, соответственно, кратковременное рефлекторное последействие;

2) пролонгированием выхода возбуждения к эффектору в результате циркуляции (реверберации) возбуждения в нейронной сети типа «нейронной ловушки». Возбуждение, попадая в такую сеть, может длительное время циркулировать в ней, обеспечивая длительное рефлекторное последействие. Возбуждение в такой цепочке может циркулировать до тех пор, пока какое-либо внешнее воздействие затормозит этот процесс или в ней наступит утомление. Примером последействия может служить хорошо всем известная жизненная ситуация, когда даже после прекращения действия сильного эмоционального раздражителя (после прекращения ссоры) еще какое-то более или менее продолжительное время продолжается общее возбуждение, артериальное давление остается повышенным, сохраняется гиперемия лица, тремор кистей.

Таким образом, последействие объясняется наличием следовой деполяризации. Если следовая деполяризация длительна, то на ее фоне в течение нескольких миллисекунд может возникать потенциал действия (ритмическая активность нейрона), вследствие чего сохраняется ответная реакция. Но это дает сравнительно короткий эффект последействия. Более длительное последействие связано с наличием кольцевых связей между нейронами. В них возбуждение как бы само себя поддерживает, возвращаясь по коллатералям аксонов к первоначально возбужденному нейрону. От кольцевых связей между нейронами зависит электрическая активность нервных центров, имеющая место и при отсутствии афферентных стимулов, которую называют тонусом центров. Это явление проявляется в том, что нервный центр вследствие спонтанной активности посылает к органам и тканям редкие импульсы и обусловливает их тонус (тонус скелетных мышц, гладких мышц внутренних органов, стенок сосудов и др.). Тоническое состояние центров поддерживается различными гуморальными факторами и афферентными импульсами.

6. Нервные центры обладают высокой чувствительностью к недостатку кислорода. Нервные клетки отличаются интенсив­ным потреблением кислорода. Мозг человека поглощает около 40–70 мл кислорода в минуту, что составляет 1/4–1/8 часть всего количества кислорода, потребляемого организмом. Потребляя большое количество кислорода, нервные клетки высокочувствительны к его недостатку. Полное или частичное прекращение кровообращения центра (при тромбозе или разрыве кровеносных сосудов) ведет к тяжелым расстройствам деятельности нейронов, а полное прекращение – к гибели в течение 5–6 мин. Даже кратковременная остановка мозгового кровообращения или кратковременное резкое падение давления в кровеносных сосудах головного мозга вызывает у человека немедленную потерю сознания. Особенно сильно страдают при прекращении кровоснабжения клетки коры больших полушарий головного мозга. Центры ствола мозга восстанавливают свои функции через15–20 мин, а центры спинного мозга – через 20–30 мин полного прекращения притока к ним крови.

7. Нервные центры, как и синапсы, обладают высокой чувствительностью к действию различных химических веществ, особенно ядов (стрихнин, морфин, фенамин, кортизол, хлороформ, барбитураты, алкоголь). На одном нейроне могут располагаться синапсы, обладающие различной чувствительностью к различным химическим веществам. Поэтому можно подобрать такие химические вещества, которые избирательно будут блокировать одни синапсы, оставляя другие в рабочем состоянии. Это делает возможным корректировать состояния и реакции как здорового, так и больного организма. Некоторые вещества действуют на определенные нервные центры. Например, апоморфин влияет болеет резко на рвотный центр, а лобелин – на дыхательный. Стрихнин блокирует функцию тормозных синапсов и вызывает резкое повышение возбудимости ЦНС, особенно спинного мозга. Кардиазол действует избирательно на двигательную зону больших полушарий.

8. Нервные центры, как и синапсы, обладают быстрой утомляемостью в отличие от нервных волокон, которые считаются практически неутомляемыми. Это обусловлено резким уменьшением запасов медиатора в нервных окончаниях, уменьшением чувствительности к медиатору постсинаптической мембраны нервной клетки, уменьшением ее энергетических запасов, что наблюдается при длительной работе и является основной причиной развития утомления. Кроме того, в процессе деятельности нейрона наступает постепенное снижение чувствительности его рецепторов к медиатору, что называется десенситиза­цией. Быстрая утомляемость нервного центра проявляется в постепенном снижении и в конечном итоге полном прекращении рефлекторного ответа при продолжительном раздражении афферентных нервных волокон.

9. Нервные центры, как и синапсы, обладают низкой лабильностью, основной причиной которой является синаптическая задержка. Суммарная синаптическая задержка, наблюдающаяся во всех нейро-нейрональных синапсах при проведении импульсации по ЦНС, или в нервном центре, называется центральной задержкой.

10. Нервные центры обладают тонусом, который выражается в том, что даже при отсутствии специальных раздражений они постоянно посылают импульсы к рабочим органам. Некоторые рефлекторные акты протекают в течение длительного времени без видимого утомления. Это, например, тонические рефлексы с длительным, многочасовым поддержанием мышечного тонуса. При осуществлении того или иного рефлекса даже в состоянии относительного покоя из нервных центров на периферию к соответствующим органам и тканям поступают разряды нервных импульсов.

При осуществлении рефлекторной реакции они более частые и идут по большему числу эфферентных волокон.

Редкие импульсы, непрерывно поступающие из нервных центров на периферию, обусловливают тонус скелетных мышц, тонус мышц кишечника, сосудистый тонус.

Такое постоянное возбуждение нервных центров и называется тонусом нервных центров. Тонические рефлексы – обязательные спутники всякого двигательного акта. Особенно велико их значение в передвижении тела в пространстве, т.е. локомоции.

11. Нервные центры обладают пластичностью – способностью изменять собственное функциональное назначение и расширять свои функциональные возможности. Также пластичность можно определить как способность одних нейронов брать на себя функцию пораженных нейронов того же центра. Именно с явлением пластичности связана способность восстанавливать двигательную активность конечностей, например, ног, утраченную в результате травм спинного мозга. Однако это возможно только при поражении части нейронов данного центра или сохранении целостными части проводящих путей ЦНС. При полном разрыве спинного мозга восстановление двигательной активности оказывается невозможным. Кроме того, нейроны одного центра, например сгибателей, не могут брать на себя функцию нейронов другого центра – разгибателей, т.е. явление пластичности центров ЦНС ограничено.

Таким образом, посттравматическая пластичность нейронных бъединений выполняет компенсаторную (восстановительную) функцию, а пластичность, вызванная длительным афферентным раздражением – приспособительную функцию. Например, для процесса обучения пластичность нейронных объединений является необходимым условием, т.е. его рабочим механизмом.

12. Окклюзия (запирание, закупорка) – (лат. осclusus – запертый) осуществляется (также как и пространственная суммация) в конвергирующей системе соединения нейронов. Одновременной активации нескольких (минимум двух) рецепторов сильным или сверхсильным раздражителями к одному нейрону будут конвергировать несколько пороговых или сверхпороговых импульсов. На этом нейроне будет происходить окклюзия, т.е. эти два раздражителя ответят с той же максимальной силой, что и на каждый из них в отдельности. Феномен окклюзии состоит в том, что количество возбужденных нейронов при одновременном раздражении афферентных входов обоих нервных центров оказывается меньше, чем арифметическая сумма возбужденных нейронов (реакций) при раздельном (изолированном) раздражении каждого афферентного входа в отдельности (рецептивных полей).

Причина феномена окклюзии – перекрытие путей на вставочных или эфферентных нейронах с помощью конвергенции.

Явление окклюзии приводит к снижению силы ответной реакции. Окклюзия имеет охранительное значение, предотвращая перенапряжение нейронов при действии сверхсильных раздражителей.

13. Индукция в нервных клетках заключается в наведении противоположного процесса (торможения) возбуждением, и наоборот. Индукция бывает одновременной и последовательной. Одновременная – наблюдается в нескольких центрах одновременно: в одном, например, возбуждение, а в соседних – торможение. Последовательная индукция наблюдается в одном и том же центре, где вслед за возбуждением наводится торможение.

Различают положительную и отрицательную индукции. Положительная – когда наводится возбуждение вслед за торможением или в соседних центрах, или в одном центре при одновременном торможении одних центров. А под отрицательнойиндукцией понимают такую, когда возбуждение наводитсяторможением или в соседних центрах, или в том же, вслед завозбуждением.

14. Облегчение проведения, или проторение пути. Установлено, что после возбуждения, возникшего в ответ на ритмическое раздражение, следующий стимул вызывает больший эффект или для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Это явление получило название облегчения. Его можно объяснить тем, что при первых стимулах ритмического раздражителя происходит перемещение пузырьков медиатора ближе к пресинаптической мембране и при последующем раздражении медиатор быстрее выделяется в синаптическую щель. Это, в свою очередь, приводит к тому, что вследствие суммации ВПСП быстрее достигается критический уровень деполяризации и возникает распространяющийся потенциал действия.

Координация рефлекторной деятельности ЦНС. Основные принципы

Координация рефлекторной деятельности ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой и одновременной реализации многих свойств ЦНС. Координация происходит от слова «сoordinati», что означает упорядочение. Основная функция нервной системы заключается в приспособлении организма к окружающим условиям. Но это возможно лишь тогда, когда рефлекторная деятельность упорядочена. Так, при раздражении любого участка тела должна быть диффузная реакция всех мышц тела и конечностей. Это происходит в силу анатомического строения ЦНС, обеспечивающего соединение различных нейронов не только на одном уровне, но и расположенных в ее верхних и нижних этажах (наблюдается у новорожденных младенцев). У взрослого человека рефлекторная деятельность упорядочена: если уколоть какой-либо палец правой руки, то отдергивается правая рука, а не левая, и тем более не нога.

Центральное торможение

Рефлекторный принцип работы нервной системы - фотография 28 - изображение 28

Явление центрального торможения было открыто И.М. Сеченовым в 1862 г. в эксперименте на таламической лягушке, у которой перерезали головной мозг на уровне зрительных бугров и удаляли полушария головного мозга (рис. 13). Затем по методу Тюрка измеряли время рефлекса отдергивания задних лапок (сгибательного рефлекса) при погружении их в раствор соляной кислоты. Время рефлекса – это время от начала раздражения до начала ответной реакции. Затем на область зрительных бугров накладывался кристалл поваренной соли, и время рефлекса увеличивалось, т.е. в таламической области мозга у лягушки существуют нервные центры, оказывающие тормозящее влияние на спинномозговые рефлексы.

Прекращение воздействия соли на зрительные бугры приво­дило к восстановлению исходного времени рефлекторной реакции.

Этот рефлекс осуществляется спинальными центрами, и его время служит показателем возбудимости нервных центров.

Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое распространяется к спинальным центрам и тормозит их деятельность. И.М. Сеченов пришел к заключению, что торможение является следствием взаимодействия двух или более возбуждений на нейронах ЦНС. В этом случае одно возбуждение становится тормозимым, другое – тормозящим.

Таким образом, И.М. Сеченов доказал, что наряду с торможением в периферической нервной системе существует и центральное торможение, характерное для ЦНС.

Торможение в ЦНС выполняет две основные функции. Во‑первых, оно координирует функции, т.е. направляет возбуждение по определенным путям к определенным нервным центрам, при этом выключая те пути и нейроны, активность которых в данный момент не нужна для получения конкретного приспособительного результата. Есл

РЕФЛЕКТОРНАЯ ДЕЯТЕЛЬНОСТЬ ЦНС

Рефлекторный принцип работы нервной системы - фотография 29 - изображение 29

Взаимодействие нервных клеток составляет основу целенаправленной деятельности нервной системы и прежде всего осуществления рефлекторных актов.

Как уже было сказано, принцип рефлекторной (отражательной) деятельности нервной системы был выдвинут еще в XVII в. французским философом и математиком Р. Декартом. Сам термин «рефлекс» был предложен в XVIII в. чешским физиологом Прохазкой. Весь последующий ход изучения деятельности нервной системы убедительно показал, что ее ответы на различные раздражения протекают по рефлекторному принци­пу. Рефлекторную природу психической деятельности обосновал И. М. Сеченов.

Рефлекторная дуга. Основой рефлекторного ответа является так называемая дуга рефлекса — комплекс специфически организованных нервных элементов, взаимодействие которых необходимо для осуществления рефлекторного акта. Рефлекторная дуга состоит из афферентной, центральной и эфферентных частей, связанных между собой с помощью синаптических соединений (рис. 74).

Афферентная часть представлена теми нервными элементами, которые формируют и проводят в центральном направлении нервные импульсы, необходимые для деятельности всей рефлекторной дуги. Поскольку возникновение афферентных импульсов связано с активацией специфических рецепторов, совокупность рецепторов, раздражение которых

Рефлекторный принцип работы нервной системы - изображение 30 - изображение 30

а

М

Рефлекторный принцип работы нервной системы - фото 31 - изображение 31

Нотный рецептор
Афферентное аолонно

Рефлекторный принцип работы нервной системы - фотография 32 - изображение 32

Рефлекторный принцип работы нервной системы - фото 33 - изображение 33

Мышца
Эфферентное волокно
б

М

Рис. 74. Схема двухнейронной (а) и три хне йро иной (б) дуг спинномозгового рефлекса. Р — рецепторный нейрон слинального ганглия; М — мотонейрон.

вызывает определенный рефлекс, называют рецептивным полем рефлекса. Следует отметить, что раздражение одних и тех же рецепторов не всегда вызывает один и тот же тип рефлекторного ответа, а могут отмечаться различные рефлексы в зависимости от того, к каким центральным структурам импульсы поступают по первичным афферент­ным нейронам. Кроме того, в рецептивном поле одного рефлекса могут находиться и различные по функции рецепторы. Так, сгибательный рефлекс может вызываться раздражением тактильных рецепторов кожи или мышечных рецепторов.

Поступающие по афферентным путям нервные импульсы с помощью синаптических переключений активируют различные нейроны ЦНС. Часть афферентных импульсов, необходимых для возникновения рефлекторного ответа, переключается также на нейроны восходящих трактов и отражается в сознании. Однако многие рефлексы возникают и без участия сферы сознания, так как для их осуществления достаточно участие подкорковых зон ЦНС. Именно поэтому многие рефлекторные акты могут сохраняться даже после разрушения большей части ЦНС. Рефлекторная деятельность может осуществляться и одним изолированным сегментом спинного мозга, выделенным из организма и перфу- зируемым искусственным путем.

Моно- и полисинаптические рефлексы. Центральная часть рефлекса может включать несколько последовательных нейронов, соединенных синаптическими контактами. Тогда рефлекс носит название полисинаптического. В простейшем случае импульсы, поступа­ющие в ЦНС по афферентному пути, переключаются непосредственно на эфферентный нейрон. Поскольку в пределах ЦНС рефлекторная дуга такого рефлекса имеет только один синапс (например, синапс между центральными окончаниями мышечных афферентов и мотонейронами), он носит название моносинаптического. Примером моно- синаптического рефлекса является сухожильный рефлекс, или рефлекс растяжения.

В результате возникновения импульсов в эфферентных нейронах происходит активация эфферентной части рефлекса и его реализация. Рефлексы очень многообразны и их исполнительная часть включает различные органы и системы организма. В большин­стве своем рефлексы служат для защиты организма и приспособления его к изменениям окружающей и внутренней среды. С их помощью адекватно координируются непроиз­вольные акты организма. Секреция желез, движения внутренних органов, реакция

Рефлекторный принцип работы нервной системы - фотография 34 - изображение 34

Рис. 75. Окклюзия. Объяснение в тексте.

сердца и сосудов, скелетной мускулатуры тонко контролируются координированными рефлекторными актами.

Большинство детальных сведений о рефлекторных актах было получено благодаря изучению мышечных ответов, поскольку последние дают объективную и хорошо измеря­емую оценку рефлекса. Примером двигательного рефлекса у человека является колен­ный рефлекс. Поскольку рефлекс не может быть вызван после того, как соответствующий центр разрушен или поврежден, наличие или отсутствие определенных рефлексов имеет важное диагностическое значение. Так, наличие коленного рефлекса свидетельствует о сохранности моторных центров поясничного сегмента спинного мозга. Рефлекторное сокращение зрачка в ответ на освещение показывает, что ядро III черепного нерва и соответствующие зрительные и эфферентные пути являются интактными.

Характер рефлекса в значительной степени зависит от интенсивности раздражения и числа активируемых рецепторов. Усиление раздражения приводит к расширению рецептивного поля рефлекса, в результате чего вовлекается большее число центральных нейронов. Указанное явление называется иррадиацией возбуждения. Процесс иррадиа­ции в значительной степени зависит от того, что отдельные афферентные нейроны вызывают подпороговую деполяризацию центральных нейронов. При увеличении числа активированных афферентных нейронов в результате процессов пространственной суммации в большем числе центральных нейронов синаптическое возбуждение достигает порога и приводит к их импульсной активности.

Усиление раздражения вызывает также возрастание частоты импульсации в аффе­рентных волокнах, что в свою очередь увеличивает ответы центральных нейронов вследствие временной суммации возбуждающих синаптических влияний.

Взаимодействие рефлексов. Различные рефлекторные реакции могут взаимодейство­вать между собой. Примером такого взаимодействия является феномен доминанты А. А. Ухтомского. Образование в ЦНС центра повышенной возбудимости приводит к тому, что раздражение самых различных рецептивных полей начинает вызывать рефлекторный ответ, характерный для деятельности этой доминантной области.

Доминантный очаг в ЦНС может возникать под влиянием разных факторов, например в результате гормональных воздействий. В частности, в период спаривания половые гормоны повышают возбудимость моторных центров шейного утолщения спинного мозга амфибий и любое раздражение кожи начинает вызывать вместо обычного рефлекса усиление тонического обнимательного рефлекса. После кастрации эти рефлексы угасают, но вновь восстанавливаются при введении полового гормона тестостерона. Показательно, что усиление активности нейронов моторных центров развивается даже при изоляции спинного мозга и добавлении тестостерона в перфузирующий раствор.

Взаимодействие рефлексов может проявляться как во взаимном облегчении (сум­мация), так и угнетении (окклюзия). Последнее явление выражается в том, что суммарный результат оказывается значительно меньшим, чем сумма взаимодействующих реакций. Согласно Ч. Шерриигтону (рис. 75), явление окклюзии объясняется перекры­тием синаптических полей, образуемых афферентными частями взаимодействующих реф­лексов. Поэтому при одновременном поступлении двух афферентных влияний ВПСП вызывается каждым из них отчасти в одних и тех же мотонейронах.

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 193)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты