Тиристор принцип работы

Что такое тиристор, как работает, типы, применения, преимущества и недостатки

Что такое тиристор, как работает, типы, применения, преимущества и недостатки - фотография 1 - изображение 1

В этом посте мы попытаемся понять, что такое тиристор, как он работает, его характеристики, режимам работы, применения, преимущества и недостатки.

Тиристор в основном представляет собой двухпозиционный переключатель для управления выходной мощностью электрической цепи путем включения и выключения цепи нагрузки в определенные промежутки времени.

Что такое тиристор

Тиристор представляет собой однонаправленное полупроводниковое твердотельное устройство с четырьмя слоями чередующегося материала P и N-типа. Он состоит из трех электродов: анода, катода и затвора. Анод — это положительный конец, а катод — это отрицательный конец.

Вход контролируют поток тока между анодом и катодом. Он используется в электронных устройствах и оборудовании для контроля электроэнергии или тока. Он действует как выпрямитель и может передавать ток только в одном направлении.

Первый тиристор был выпущен в 1956 году. Самым распространенным типом тиристоров является кремниевый управляемый выпрямитель (SCR).

Что такое тиристор - фото 2 - изображение 2

Купить тиристор на Алиэкспресс вы можете нажав на картинку ниже:

Как работает тиристор - изображение 3 - изображение 3

Как работает тиристор

Тиристор действует как диод. Он состоит из двух слоев полупроводников, а именно p-типа и n-типа, расположенных между собой для образования соединения. Анод соединен с внешним p-слоем, катод с внешним n-слоем и затвором с внутренним p-слоем. Он имеет 3 соединения, а именно J1, J2, J3.

Характеристики Тиристора - фото 4 - изображение 4

Когда анод имеет положительный потенциал относительно катода, на затвор не подается напряжение. Соединения J1, J3 смещены в прямом направлении, а J2 — в обратном. Так что никакой проводимости здесь не происходит.

Теперь, когда положительный потенциал увеличивается за пределами напряжения пробоя, происходит пробой соединения J2, и он начинает проводить ток. Как только происходит пробой, он продолжает проводить независимо от напряжения на затворе, пока потенциал на аноде не будет удален или ток через устройство не станет меньше, чем ток удержания.

Теперь, когда положительный потенциал приложен к клемме затвора по отношению к катоду, происходит пробой соединения J2. Чтобы быстро включить тиристор, необходимо выбрать соответствующее значение потенциала.

Вход действует как управляющий электрод. Когда небольшое напряжение, известное как импульс затвора, подается на его затвор, устройство переключается в состояние проводимости. Это продолжается до тех пор, пока напряжение на устройстве не изменится или не будет снято.

Ток запуска затвора изменяется обратно пропорционально напряжению затвора, и для его запуска требуется минимальный заряд затвора. Таким образом, переключением тиристоров можно управлять через его импульс затвора.

Двухтранзисторная аналогия тиристора

Ток коллектора от NPN-транзистора подается непосредственно на базу PNP-транзистора, а ток коллектора PNP-транзистора подается на базу NPN-транзистора. Эти соединенные транзисторы полагаются друг на друга для проводимости.

Таким образом, для проведения одного из транзисторов требуется базовый ток. Когда анодный вывод тиристора является отрицательным по отношению к катоду, NP-переход становится смещенным вперед, а PN-переход становится обратным смещением.

Типы тиристоров - фотография 5 - изображение 5

Два транзисторных аналога тиристора

Здесь поток обратного тока блокируется до тех пор, пока не будет приложено напряжение пробоя. После пробивного напряжения оно начинает проводить без подачи сигнала затвора. Это одна из отрицательных характеристик тиристоров, так как она запускает проводимость при обратном разрыве напряжения.

Когда анодный вывод сделан положительным по отношению к катоду, внешние переходы смещены в прямом направлении, а центральный переход NP смещен в обратном направлении и блокирует прямой ток. Таким образом, чтобы вызвать его в проводимости, положительный ток прикладывается к базе транзисторов.

Два транзистора соединены в регенеративном контуре, и это заставляет транзистор проводить насыщение. Таким образом, можно сказать, что тиристоры блокируют ток как в направлении источника переменного тока в выключенном состоянии, так и могут включаться путем приложения положительного тока к базе транзистора.

Характеристики Тиристора

Тиристоры могут иметь прямое или обратное смещение. Посмотрим, как это работает в обоих направлениях.

Тиристоры в состоянии смещения вперед

Когда анод становится положительным, PN-соединения на концах смещены вперед, а центральное соединение (NP) становится смещенным назад. Он будет оставаться в заблокированном (ВЫКЛ) режиме (также известном как этап прямой блокировки) до тех пор, пока он не будет вызван импульсом тока затвора или приложенное напряжение не достигнет напряжения прямого отключения.

Запуск по импульсу тока затвора  Когда он запускается импульсом тока затвора, он начинает проводить и будет действовать как переключатель замыкания. Тиристоры остаются во включенном состоянии, то есть остаются в заблокированном состоянии. Здесь вход теряет контроль, чтобы выключить устройство.

Запуск по напряжению прямого отключения — Когда подается прямое напряжение, ток утечки начинает протекать через блокировку (J2) в среднем соединении тиристоров. Когда напряжение превышает прямое отключение перенапряжения или критического предела, то J2 выходит из строя и достигает состояния ON.

Когда ток затвора (Ig) увеличивается, он уменьшает площадь блокировки и, таким образом, уменьшается прямое отключающее напряжение. Он включится, когда будет поддерживаться минимальный ток, называемый запирающим током.

Когда ток затвора Ig = 0 и ток анода падают ниже определенного значения, называемого удерживающим током, во время состояния ВКЛ, он снова достигает своего состояния прямой блокировки.

Применение тиристора - изображение 6 - изображение 6

Тиристоры в обратном смещенном состоянии

Если анод является отрицательным по отношению к катоду, то есть с приложением обратного напряжения, оба PN-перехода на конце, то есть J1 и J3, становятся смещенными в обратном направлении, и центральное соединение J2 становится смещенным в прямом направлении. Через него протекает только небольшой ток утечки. Это режим блокировки обратного напряжения или выключенное состояние тиристора.

Когда обратное напряжение увеличивается еще больше, то при определенном напряжении происходит лавинный пробой J1 и J2, и он начинает проводить в обратном направлении. Максимальное обратное напряжение, при котором тиристор начинает проводить ток, называется обратным напряжением пробоя.

  • Тиристор блокирует напряжение как в прямом, так и в обратном направлении, и, таким образом, образуется симметричная блокировка.
  • Тиристор включается при приложении положительного тока затвора и выключается, когда напряжение на аноде падает до нуля.
  • Небольшой ток от затвора к катоду может запустить тиристор, изменив его с разомкнутой цепи на короткое замыкание.

Режимы работы тиристора

Тиристор имеет три режима работы:

  • Блокировка вперед
  • Обратная блокировка
  • Прямая проводимость

Блокировка вперед

В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.

Обратная блокировка

В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.

Прямая проводимость

При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.

Типы тиристоров

Основываясь на возможностях включения и выключения и физической структуре, тиристоры классифицируются как:

  • Тиристоры с силиконовым управлением (SCR)
  • Тиристор отключения эмиттера (ETO)
  • Тиристоры с быстрым переключением (SCR)
  • Светоактивированные кремниевые выпрямители (LASCR)
  • Ворота отключают тиристоры (GTO)
  • Тиристоры с обратной проводимостью (RCT)
  • Тиристоры с управлением FET (FET-CTH)
  • MOS-контролируемый тиристор (MTO)
  • Двунаправленные фазово-управляемые тиристоры (BCT)

Применение тиристора

Тиристор используется в различных применениях, таких как:

  • В основном используется в двигателях с переменной скоростью.
  • Используется для управления электроприводом высокой мощности.
  • Используется в основном в двигателях переменного тока, светильниках, сварочных аппаратах и ​​т. Д.
  • Используется в ограничителе тока короткого замыкания и выключателе.
  • Быстрая скорость переключения и низкая проводимость возможны в тиристоре ETO.
  • Используется в качестве диммеров на телевидении, в кинотеатрах.
  • Используется в фотографии для вспышек.
  • Может использоваться в охранной сигнализации.
  • Используется в регулировании скорости вращения электрического вентилятора.
  • Используется в автомобильных зажиганиях.

Преимущества тиристора

Преимущества тиристора включают в себя:

  • Бюджетный.
  • Может быть защищен с помощью предохранителя.
  • Может обрабатывать большое напряжение / ток.
  • Способен контролировать мощность переменного тока.
  • Очень легко контролировать.
  • Легко включить.
  • Тиристор GTO или Gate Turnoff обладает высокой эффективностью.
  • Занимает меньше времени на работу.
  • Тиристорные выключатели могут работать с большой частотой.
  • Требует меньше места по сравнению с механическими переключателями.
  • Может использоваться для надежных операций.
  • Стоимость обслуживания тиристора очень меньше.
  • Очень прост в использовании для сложного управления.
  • Грузоподъемность очень хорошая.
  • Может использоваться в качестве генератора в цифровых цепях.
  • Может быть подключен параллельно и последовательно для обеспечения электронного управления на высоких уровнях мощности.
  • Тиристоры проводят ток только в одном направлении.
  • Он может использоваться как защитное устройство, как предохранитель в линии электропередачи.

Недостатки тиристора

К недостаткам тиристора можно отнести:

  • Не может использоваться для более высоких частот.
  • В цепи переменного тока тиристор должен быть включен на каждом цикле.
  • SCR требуется время для включения и выключения. Это вызывает задержку или повреждение в нагрузке.
  • Он может остановить двигатель при подключении, но не может удерживать его в неподвижном состоянии.
  • Скорость отклика тиристора очень низкая.
  • Не часто используется в цепях постоянного тока, так как тиристор нельзя отключить, просто сняв привод затвора.
  • Низкая эффективность.
  • Ток фиксации и удержания больше в тиристоре GTO.
  • Возможность обратной блокировки напряжения меньше возможности прямой блокировки.
  • Надежность тиристора TRIAC меньше, чем SCR.
  • TRIAC имеют более низкий рейтинг dv / dt по сравнению с SCR.

Автор: Тимеркаев Борис

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Как работают мощные силовые тиристоры

Преимущества тиристора - фото 7 - изображение 7

В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.

Содержание

  1. Что такое тиристор и их виды
  2. Применение тиристора
  3. Описание конструкции и принцип действия
  4. Проверка тиристора
  5. Технические характеристики

Что такое тиристор и их виды

Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.

Что такое тиристор и как он работает

Недостатки тиристора - изображение 8 - изображение 8

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих. 

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Как работают мощные силовые тиристоры - фото 9 - изображение 9

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Что такое тиристор и их виды - изображение 10 - изображение 10

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Что такое тиристор и как он работает - изображение 11 - изображение 11

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

Что такое тиристор, его устройство и обозначение на схеме - изображение 12 - изображение 12

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод,  выше чем неотпирающее напряжение (эти данные есть в технических характеристиках).  Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Принцип работы тиристора простыми словами - фотография 13 - изображение 13

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Проверка работоспособности - фотография 14 - изображение 14

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

Виды тиристоров и их особые свойства - фото 15 - изображение 15

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

    Характеристики и их значение - изображение 16 - изображение 16

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности - фотография 17 - изображение 17

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Устройство тиристора и области применения - изображение 18 - изображение 18

Схема проверки тиристора при помощи лампочки и источника питания
  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Принцип работы тиристоров - фотография 19 - изображение 19

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Классификационные признаки - фотография 20 - изображение 20

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке - изображение 21 - изображение 21

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает.

    Проверка тиристора на исправность - изображение 22 - изображение 22

    Пример характеристик
  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

Заключение - фото 23 - изображение 23

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону).

Тиристор: принцип работы, проверка, особенности и характеристики - изображение 24 - изображение 24

Схема тиристора

Этот преобразователь имеет два устойчивых состояния: закрытое (состояние низкой проводимости) и открытое (состояние высокой проводимости). Назначение тиристора – выполнение функции электроключа, особенность которого – невозможность самостоятельного переключения в закрытое состояние. Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока. Основным материалом при производстве этого полупроводникового устройства является кремний. Корпус изготавливается из полимерных материалов или металла – для моделей, работающих с большими токами.

Устройство тиристора и области применения

В состав прибора входят 3 электрода:

  • анод;
  • катод;
  • управляющий электрод.

В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).

Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.

Принцип работы тиристоров

В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:

  • характер нагрузки – индуктивная, реактивная;
  • величина тока нагрузки;
  • скорость и амплитуда увеличения управляющего импульса;
  • температура среды устройства;
  • уровень напряжения.

Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:

  • естественное выключение (естественная коммутация);
  • принудительное выключение (принудительная коммутация), этот вариант может осуществляться множеством способов.

При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.

Классификационные признаки

По способу управления различают следующие виды тиристоров:

Диодные (динисторы)

Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.

Триодные (тринисторы)

Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.

Симисторы

Выполняют функции двух включенных параллельно тиристоров.

Оптотиристоры

Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.

По обратной проводимости тиристоры разделяются на:

  • обратно проводящие;
  • обратно непроводящие;
  • с ненормируемым обратным значением напряжения;
  • пропускающие токи в двух направлениях.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке

  • Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
  • Максимально допускаемый обратный ток.
  • Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
  • Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
  • Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
  • Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
  • Наибольшая допустимая рассеиваемая мощность.

Проверка тиристора на исправность

Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме:

Устройство и виды полупроводниковых приборов - изображение 25 - изображение 25

Такая схема предназначена для работы при напряжении 9-12 В. Для других значений напряжения питания производят перерасчет величин R1-R3.

Этапы проверки:

  • К аноду подключают положительный полюс, к катоду подводят «-».
  • На управляющий электрод с помощью кнопки SA подают сигнал к открытию устройства.
  • Если светодиод загорается до нажатия кнопки SA или не загорается после нажатия, то прибор является неработоспособным.

Заключение

Тиристор - не полностью управляющий ключ. Если есть ток удержания, то перейдя в открытое состояние, тиристор остается в нем, даже если прекращать подавать сигнал на управляющий переход.

Тиристор: принцип работы, проверка, особенности и характеристики

Возможность обратной проводимости - фото 26 - изображение 26

В переключательных схемах часто используется тиристор, принцип работы которого напоминает электронный ключ. Он представляет собой полупроводниковый прибор, имеющий три или несколько взаимодействующих выпрямляющих переходов. Однако тиристор не способен перейти в состояние закрытого типа, поэтому его называют ключом, который является не полностью управляемым.

Работа в цепи постоянного тока - изображение 27 - изображение 27

Устройство и виды полупроводниковых приборов

Прежде чем рассматривать принцип работы тиристоров в цепях, необходимо разобраться с тем, как они устроены, какие виды существуют. Состоят они из четырех последовательно соединенных слоев, которые имеют разный тип проводимости. С внешней стороны есть контакты – анод и катод. Приборы могут обладать двумя управляющими электродами, прикрепленными к внутренним слоям. Изменения состояния удается добиться за счет подачи сигнала непосредственно на проводник.

Различают два основных вида тиристоров:

  1. Динисторы представляют собой диодные полупроводниковые приборы. В данном случае открывание осуществляется посредством подачи высокого напряжения между контактами.
  2. Тринисторы – это триодные аналоги. Их удается открывать за счет воздействия управляющего тока на электрод.

Процесс запирания может производиться двумя способами. Первый из них подразумевает снижение электрического тока ниже уровня удержания. Вариант применим для всех видов тиристоров. Второй способ заключается в нагнетании запирающего напряжения непосредственно на управляющий контакт. Он используется только для тринисторов запираемого типа.

Возможность обратной проводимости

Рассматривая принцип работы тиристора, следует понимать, что элементы могут быть классифицированы по обратному напряжению.

Функционирование в цепи переменного тока - фотография 28 - изображение 28

Всего существует четыре варианта изделий:

  1. Обратно-проводящие приборы обладают небольшим обратным напряжением. Оно составляет всего несколько вольт.
  2. Элементы, не проводящие напряжение в обратном направлении в закрытом состоянии.
  3. Симисторы представляют собой симметричные приборы, которые коммутируют электрические токи в том или ином направлении.
  4. Изделия с ненормированным напряжением обратного направления.

Используя симисторы, необходимо помнить, что они функционируют симметрично лишь на первый взгляд. При подаче отрицательного (на анод) и положительного (на управляющий электрод) напряжения они не способны открываться, а в некоторых случаях могут выходить из строя.

В электронике симисторы относят к управляемым тиристорам, принцип работы которых заключается в коммутации цепей переменного тока. При проектировании таких схем, необходимо изучать документацию конкретного изделия, чтобы определить, какие сигналы допустимы. Отдельные виды симисторов могут иметь некоторые ограничения.

Работа в цепи постоянного тока

Если объяснять принцип работы тиристора простым языком, то он заключается во включении полупроводникового прибора посредством подачи импульса электрического тока непосредственно в цепь управления положительной полярности. На продолжительность переходного процесса существенно влияет характер производимой нагрузки, а также другие факторы:

  • скорость и амплитуда созданного импульса;
  • температура полупроводниковой конструкции;
  • передаваемое напряжение;
  • ток нагрузки.

Режим обратного запирания - фото 29 - изображение 29

В цепи с тиристором при увеличении прямого напряжения не должно фиксироваться завышенных значений скорости нарастания. В противном случае может происходить непреднамеренное включение прибора без подачи сигнала. Однако крутизна производимого импульса не должна быть низкой.

Выключение элементов может происходить естественным или принудительным образом. В первом случае коммутация в системах переменного тока осуществляется в момент падения электрического тока до минимума. Что касается вариантов принудительного выключения, то оно может быть весьма разнообразным:

  1. Подключение специализированной цепи с наличием заряженного конденсатора вызывает возникновение разряда на проводящий элемент. Встречный поток снижает ток до нуля, поэтому прибор выключается.
  2. Подключение контура, вызывающего колебательный разряд, позволяет пропустить электричество через тиристор на встречу прямому току. При достижении равновесия происходит выключение.
  3. Переходный процесс может вызываться при оказании комплексной нагрузки. При наличии определенных параметров возникает колебательный характер, подразумевающий изменение полярности.

Режим прямого запирания - изображение 30 - изображение 30

Функционирование в цепи переменного тока

Теперь следует рассмотреть принцип работы тиристора в цепи, которая пропускает переменный ток. При его внедрении можно производить включение и отключение электрических сетей с активной нагрузкой, а также осуществлять изменение среднего и текущего значений тока путем регулировки подачи сигнала.

Не новость даже для чайников – принцип работы тиристора заключается в пропускании электричества в одном направлении, поэтому в цепях с переменным током осуществляется встречно-параллельное включение. Значения могут варьироваться путем изменения самого момента подачи на приборы открывающих сигналов. Углы регулируются за счет системы управления.

  1. Фазовый метод регулировки с принудительной коммутацией предполагает применение специальных узлов.
  2. Широтно-импульсное управление подразумевает отсутствие сигнала в закрытом состоянии и его наличие в открытом положении, когда к нагрузке приложено определенное напряжение.

Двухтранзисторная модель - фотография 31 - изображение 31

Режим обратного запирания

Рассказывая о принципе работы триодного тиристора, нельзя не отметить, что оно может работать в разных режимах. При обратном запирании непосредственно к аноду полупроводника приложено отрицательное напряжение по отношению к катодному контакту. Переходы при таком варианте смещены в противоположном направлении.

Существуют факторы, ограничивающие применение подобного режима. Первый из них – это лавинный пробой, а второй – прокол обедненной области. Это объясняется тем, что существенная часть напряжения снижается на одном из переходов. Возникает их смыкание или происходит пробой.

Режим прямого запирания

Принцип работы тиристора в режиме прямого запирания предполагает обратное смещение одного из переходов. Противоположные слои сдвинуты в прямом направлении. Основная часть приложенного напряжения снижается на единичном переходе. Через остальные слои в соприкасающиеся области инжектируются носители, позволяющие уменьшить сопротивление на проводящем элементе. Происходит увеличение проходящего тока. Падение напряжения уменьшается.

Чем различаются динисторы и тринисторы - изображение 32 - изображение 32

Увеличение прямого напряжения приводит к медленному росту электрического тока. В таком режиме полупроводник считается запертым, что связано с повышенным сопротивлением единичного перехода. При некотором показателе напряжения процесс начинает приобретать лавинообразный характер. Прибор переходит во включенное состояние, в нем устанавливается электрический ток, который зависит от источника и сопротивления цепи.

Двухтранзисторная модель

Для объяснения устройства и принципа работы тиристора в режиме прямого запирания применяется двухтранзисторная модель. Данный полупроводниковый прибор можно рассматривать как два совмещенных транзистора с противоположными выводами. Переход в центре используется в качестве коллектора дырок и электронов, которые инжектируются определенными переходами.

Соотношения не изменяются при протекании токов в противоположном направлении. При повышении коэффициента в замкнутой петле происходит лавинообразный процесс, подразумевающий увеличение тока непосредственно через структуру. Электрический ток ограничен лишь сопротивлением наружной цепи.

Чем различаются динисторы и тринисторы

Принципиальных отличий между характеристиками и принципом работы тиристоров нельзя найти. Однако открытие динистора производится при наличии определенного напряжения между двумя основными выводами. Оно зависит от типа используемого устройства. В случае с тринистором напряжение открытия удается снизить принудительным образом. Это можно сделать, если подать импульс электрического тока необходимой величины непосредственно на управляющий электрод. Тринисторы получили наибольшее распространение среди приборов из категории тиристоров.

Основные характеристики

При выборе тиристоров обращают внимание на определенные параметры:

  1. Напряжение включения позволяет перевести полупроводниковый прибор в рабочее состояние.
  2. Временной интервал задержки запуска и остановки изделия.
  3. Уровень обратного тока при максимальном значении обратного напряжения.
  4. Показатель общей рассеивающей мощности.
  5. Прямое напряжение при предельном токе анода.
  6. Пиковый ток электрода, обеспечивающего управление.
  7. Обратное напряжение в закрытом состоянии.
  8. Максимальный открытый ток в открытом положении.

Основные характеристики - фото 33 - изображение 33

При выборе тиристора не следует забывать о предназначении прибора. На это непосредственное влияние оказывает временной интервал перехода в открытое или закрытое состояние. Как правило, период включения является более коротким, чем промежуток выключения.

Схемы с применением тиристоров

Тиристорные схемы подразделяются на четыре категории:

  1. Пороговые изделия используют возможности перехода полупроводников из одного положения в другое при наличии определенного напряжения. К таковым относятся генераторы колебаний и фазовые регуляторы нагрузки.
  2. Силовые ключи отличаются низкой мощностью. Ток рассеивается элементами в переключательных схемах в открытом состоянии. В закрытом положении электричество не пропускается.
  3. Коммутация постоянного напряжения вполне возможна при использовании приборов с большой мощностью. Есть несколько способов, позволяющих закрывать незапираемые элементы.
  4. Некоторые экспериментальные устройства работают с применением полупроводниковых приборов в переходных режимах, где имеются участки с отрицательным уровнем сопротивления.

В качестве заключения

Чаще всего рассказывают о принципах работы тиристоров для студентов специализированных училищ, которые готовят специалистов в области электротехники. Однако не помешает изучить информацию об устройстве и функционировании универсальных полупроводниковых приборов простым людям, проявляющим интерес к проектированию различных электрических схем.

Устройство и принцип работы тиристора

Схемы с применением тиристоров - фотография 34 - изображение 34

Тиристором (от греч. thyra - дверь и резистор), называется полупроводниковый прибор, содержащий три p-n перехода и четыре слоя с чередующимися типами проводимости. Тиристоры обладают односторонней проводимостью от анода к катоду. Различают диодные тиристоры (динисторы) и триодные (управляемые) тиристоры. Условные графические обозначения динистора и тиристора, а также внешний вид некоторых типов тиристоров представлен на рис. 14.1.

В качестве заключения - фотография 35 - изображение 35

динистор

Устройство и принцип работы тиристора - изображение 36 - изображение 36

Тиристор: принцип работы. Классификация тиристоров - фото 37 - изображение 37

тиристор

Описание - фото 38 - изображение 38

Рис. 14.1. Условное графическое обозначение и внешний вид динистора и тиристора

Электрические характеристики тиристоров близки к характеристикам идеального ключа. Они могут находиться только в двух состояниях:

- закрытом – сопротивление более 100 кОм;

- открытом – сопротивление 0,01…0,1 Ом.

Общим признаком, характерным для четырёхслойных полупроводниковых структур, является регенеративный процесс, происходящий при открывании (переходе из закрытого в открытое состояние). Регенеративный процесс возникает из-за внутренней положительной обратной связи.

Рассмотрим работу неуправляемого диодного тиристора – динистора. Структура динистора представлена на рис. 14.2.

Для удобства анализа работы такой p-n-p-n структуры заменим её эквивалентной схемой из двух транзисторов с разным типом проводимости p-n-p и n-p-n. Эквивалентная схема представлена на рис. 14.3.

Из эквивалентной схемы замещения динистора видно, что переход П1 – это переход эмиттер-база транзистора p-n-p, переход П3 – это переход эмиттер-база транзистора n-p-n, а переход П2 – их общий переход коллектор-база.

Коммутация - фото 39 - изображение 39

Рис. 14.2. Структура динистора

Способы выключения и включения - изображение 40 - изображение 40

Принцип работы тиристора в цепях постоянного тока - фото 41 - изображение 41

а) б)

Рис. 14.3. Эквивалентная схема замещения динистора:

а – с послойным представлением переходов; б – на транзисторах p-n-p и n-p-n

При приложении к динистору напряжения в полярности, указанной на рис. 14.2 (+ к аноду, - к катоду), переходы П1 и П3 открыты, а П2 закрыт. Через динистор проходят два встречных потока зарядов:

- дырки из слоя p1 через n2 в p3;

- электроны из слоя n4 через p3 в n2.

В базах n2 и p3 эти носители зарядов частично рекомбинируют, и в переход П2 входит лишь часть этих потоков, определяемая коэффициентами передачи токов a1 и a2. Также через переход П2 проходит ток не основных носителей зарядов, представляющий собой обратный ток закрытого перехода IК.ОБР. Тогда суммарный ток через переход П2 составит

Переменная цепь: принцип действия тиристоров - изображение 42 - изображение 42

. (14.1)

Но по первому закону Кирхгофа ток в неразветвлённой цепи одинаков на любом её участке, следовательно

Фазовая и широтно-импульсная модуляция - изображение 43 - изображение 43

, (14.2)

где I – ток во внешней цепи.

Так как

Разновидности - фото 44 - изображение 44

,

Характеристики - фото 45 - изображение 45

, тогда из выражений (14.1) и (14.2) можно записать

Конструкция - фотография 46 - изображение 46

, причём a2 > a1.

Регенеративный процесс (из-за внутренней положительной обратной связи) учитывается коэффициентом лавинного умножения М. С учётом этого коэффициента получим

В заключение - фото 47 - изображение 47

. (14.3)

Следовательно, ток закрытого динистора определяется обратным током перехода П2. В лекции 1 было отмечено, что с ростом обратного напряжения возрастает обратный ток закрытого p-n перехода, а в лекции 9 – что этот ток возрастает и с ростом температуры.

На рис. 6.3 была показана зависимость коэффициента передачи тока эмиттера транзистора от величины тока эмиттера. Из рисунка следует, что для малых значений тока a<<1. Но с увеличением тока a быстро увеличивается.

Если увеличивать напряжение во внешней цепи динистора, начнёт увеличиваться обратный ток перехода П2. Увеличение этого тока вызовет рост коэффициентов передачи a1 и a2 транзисторов. Когда напряжение во внешней цепи достигнет значения, при котором M×(a1 + a2) = 1 (напряжение включения Uвкл), ток, в соответствии с выражением (14.3), резко возрастёт, наступит насыщение общего коллекторного перехода П2, и динистор откроется. Это явление иллюстрирует вольтамперная характеристика динистора, представленная на рис. 14.4.

Тиристоры: определение, устройство, физические процессы, схемы, как работает - фото 48 - изображение 48

Рис. 14.4. Вольтамперная характеристика динистора

На вольтамперной характеристике можно выделить три участка: 1 – участок закрытого состояния, когда рост напряжения во внешней цепи вызывает постепенное увеличение обратного тока перехода П2; 2 – участок отрицательного сопротивления, когда начинается регенеративный процесс, и напряжение на динисторе резко уменьшается; 3 – участок открытого состояния, аналогичный прямой ветви вольтамперной характеристике полупроводникового диода.

При приложении к динистору обратного напряжения переходы П1 и П3 закрыты, и динистор остаётся закрытым до напряжения лавинного пробоя (напряжения Зенера Uобр.макс), которое примерно равно напряжению включения. Если превысить величину напряжения Зенера, то переходы П1 и П3 будут пробиты, и динистор выйдет из строя.

С ростом температуры напряжение включение будет уменьшаться, так как при нагреве возрастает обратный ток перехода П2, и регенеративный процесс включения начинается при меньшем напряжении.

Время переключения в открытое состояние составляет единицы микросекунд, так как регенеративный процесс нарастает очень быстро. Открывание динистора – процесс обратимый. Чтобы регенеративный процесс в переходе П2 не прекращался, через динистор должен проходить ток, поддерживающий этот процесс. Минимальная величина прямого тока, при котором существует регенеративный процесс, называется током удержания. Для закрывания динистора нужно просто уменьшить ток через него до величины, меньшей тока удержания. Однако время выключения будет примерно в 10 раз больше, чем время включения, так как требуется рассасывание зарядов, насыщавших переход П2.

Существенным недостатком динисторов является невозможность перевода их в открытое состояние при напряжениях во внешней цепи, меньше чем напряжение включения. Этот недостаток устранён в тиристоре.

Рассмотрим работу управляемого четырёхслойного полупроводникового прибора – тиристора. Структура тиристора представлена на рис. 14.5.

Тиристоры, принцип действия и разновидности. Характеристики. Область использования - фото 49 - изображение 49

Рис. 14.5. Структура тиристора

Тиристор отличается от динистора наличием управляющего электрода УЭ, который подключён к слою р3, и на который подаётся положительное относительно катода напряжение Uупр.

Для тиристоров специально выбирают режим внешней цепи ЕА < Uвкл, чтобы тиристор был надёжно закрыт. Для перевода тиристора в открытое состояние подают импульс управляющего напряжения. Из-за этого увеличивается ток перехода П3, увеличивается коэффициент передачи тока a2, и, если увеличение a2 будет достаточным для условия M×(a1 + a2) = 1, возникает регенеративный процесс и тиристор открывается.

После открывания тиристора управляющий электрод теряет свои управляющие свойства, поэтому закрыть не запираемый тиристор сигналом управляющего электрода нельзя. Закроется тиристор лишь тогда, когда ток во внешней цепи станет меньше тока удержания.

Рассмотрим влияние величины тока управления на напряжение открывания тиристора по вольтамперной характеристике, представленной на рис. 14.6.

Тиристоры и схемы коммутации мощной нагрузки - фотография 50 - изображение 50

Рис. 14.6. Вольтамперная характеристика тиристора

Если ток управления небольшой (IУПР1), то напряжение включение незначительно уменьшается относительно UВКЛ динисторного режима. С ростом величины тока управления (IУПР2 > IУПР1) напряжение включения уменьшается. Если ток управления будет достаточно большим, то тиристор будет открываться при минимальном напряжении на аноде. Участок отрицательного сопротивления на вольтамперной характеристике исчезнет, то есть соединятся участки 1 и 3 (рис. 14.4). Такой управляющий ток называется током управления спрямления (IУПР.СПР).

Тиристор: принцип работы. Классификация тиристоров

Тиристор – краткий обзор полупроводника - фотография 51 - изображение 51

Принцип работы тиристоров основывается на основе полупроводникового кристалла (электронного ключа) с тремя или более p-n переходами. Элемент имеет две устойчивых позиции: состояние низкой или высокой проводимости. Под воздействием контрольного сигнала прибор приводится в проводящее воздействие. Другими словами – он включает цепь. Для ее активации необходимо создать подходящие условия, обеспечивающие снижение основного тока до нулевой отметки.

Тиристор в цепи постоянного напряжения - изображение 52 - изображение 52

Описание

На пальцах принцип работы тиристора можно объяснить следующим образом: ключи проводят ток исключительно в прямом направлении. А в закрытом положении он выдерживает также и обратное напряжение. Структура приспособления имеет четыре слоя и три вывода:

  1. А (анод).
  2. К (катод).
  3. У (управляющий электрод).

Мощные электронные ключи оснащены различными амперными и вольтажными параметрами, которые влияют на работоспособность и состояние элемента. Тиристоры способны функционировать при значениях до пяти тысяч вольт, 5000 А, если частота не превышает 1000 Гц.

Коммутация

Принцип работы тиристора позволяет работать ему в двух коммутирующих диапазонах:

  1. Естественной коммутации. Она возникает при работе прибора в схеме переменного тока. Происходит данный процесс, когда ток снижается до нулевой позиции.
  2. Принудительной коммутации. Этот процесс может осуществляться несколькими способами в зависимости от схемы, используемой разработчиком.

Стандартным видом принудительной коммутации является подключение заряженного конденсатора. В такой цепи при нагрузке происходят колебания тока.

Тиристор в цепи переменного тока - изображение 53 - изображение 53

Способы выключения и включения

Принцип работы тиристора позволяет использовать несколько способов принудительной коммутации. Среди них:

  1. Использование конденсатора с обратной полярностью. Он может активироваться в цепи при помощи вспомогательного элемента. Затем производится разряд на основной тиристор, в результате чего ток, направленный навстречу прямому напряжению, будет обеспечивать его снижение вплоть до нулевой позиции. Происходит выключение прибора, что обусловлено его характерными особенностями.
  2. Подключение LC-цепочек. Они разряжаются с колебаниями, обеспечивая встречу рабочего и разрядного тока. После их уравновешивания тиристор выключается. В итоговой фазе ток из колебательной цепи перемещается через тиристор в полупроводниковый диод. Во время этого процесса к прибору применяется определенное напряжение, равное по модулю аналогичному показателю на диоде.

Тиристор принцип работы - фотография 54 - изображение 54

Принцип работы тиристора в цепях постоянного тока

Стандартный прибор активируется посредством подачи тока на контрольный вывод. Он должен быть положительным по отношению к катоду. Течение переходных потоков зависит от вида нагрузки, ее амплитуды и скорости нагнетания импульсного тока. Кроме того, имеет значение температурный режим полупроводникового кристалла, а также приложенное напряжение в схемах тиристоров. Параметры схемы непосредственно зависят от типа используемого полупроводника.

В цепи размещения тиристора не допускается интенсивное нарастание скорости повышения напряжения. Достигается такое значение, которое обеспечивает самопроизвольную деактивацию прибора, даже без наличия сигнала в системе управления. При этом синхронно должен поддерживаться высокий показатель характеристики блока управления.

Тиристор принцип работы - фотография 55 - изображение 55

Переменная цепь: принцип действия тиристоров

Принцип работы элемента в этом случае позволяет осуществить следующие действия:

  1. Активировать или разорвать электрическую цепь с активной или резистивной нагрузкой.
  2. Корректировать рабочий и средний показатель тока, дающего нагрузку. Это возможно благодаря регулировке пика подачи управления.
  3. Поскольку тиристоры проводят ток в одном направлении, в переменных цепях потребуется использование встречно-параллельного включения. Рабочее и среднее значение напряжения может варьироваться по причине изменения сигнала подачи на прибор. В любом случае мощность элемента должна соответствовать предъявляемым параметрам.

Фазовая и широтно-импульсная модуляция

Способы включения тиристоров также предусматривают фазовое управление. При этом выполняется регулировка нагрузки путем корректировки фазовых углов. Искусственно коммутирование доступно произвести посредством применения специальных цепей либо полностью запираемых аналогов. Таким способом изготавливают преимущественно тиристоры на зарядные устройства с возможностью регулировки силы тока соответственно заряду аккумулятора.

Широтно-импульсная модуляция (ШИМ) работает следующим образом:

  • При открытии тиристора подается сигнал контроля.
  • При этом переходы находятся открытыми, а на нагрузочной части появляется определенное напряжение.
  • В период закрытия элемента сигнал управления не транслируется, что обеспечивает остановку подачи тока через прибор.

Стоит отметить, что при фазовом контроле кривая тока не является синусоидальной, выполняется трансформация формы сигнала напряжения. При этом намечается нарушение функционирования потребляющих элементов, которые восприимчивы к помехам высоких частот. Изменить величину на требуемый показатель позволяет специальный регулятор.

Тиристор принцип работы - изображение 56 - изображение 56

Разновидности

Существует несколько типов тиристоров (принцип работы для "чайников" рассмотрен выше). Используются они в зарядных устройствах, переключателях, регуляторах уровня громкости. Выделяют следующие модификации:

  • Оптотиристор. Использует в цепи полупроводник, особо чувствительный к свету. Управляется прибор путем подачи светового потока.
  • Тиристор-диод. Оснащен активным параллельно подключенным диодом.
  • Динистор. Может трансформироваться в режим полной проводимости (при превышении номинального показателя напряжения).
  • Симистор. Состоит из пары тиристоров, имеющих встречное параллельное включение.
  • Инверторный тиристор. Отличается высокой коммутативной скоростью до 50 мкс.
  • Элементы с полевым транзистором. Работают по типу металло-оксидных полупроводников.

Характеристики

Рассмотрим параметры и принцип работы тиристора КУ202Н:

  • Предельное напряжение – 400 В.
  • Постоянный/повторяющийся импульсный ток – 30/10 А.
  • Напряжение в открытом режиме – 1,5 В.
  • Показатель рабочего постоянного тока – 4 мА.
  • Отпирающий ток на контрольном блоке – 200 мА.
  • Максимальная нарастающая скорость в закрытом положении – 5 В/мкс.
  • Период включения/выключения – 10/100 мкс.

Работает прибор по стандартной схеме для запирающихся тиристоров. Его аналоги: 1Н4202, ВТХ32 С100, КУМ202М.

Тиристор принцип работы - изображение 57 - изображение 57

Конструкция

Четырехслойная конфигурация тиристоров отличает их от аналогов полной управляемостью элемента. Амперный и вольтажный показатель при прямом направлении тока схож с параметрами обычных тиристоров. Однако рассматриваемые приборы способны пропускать существенное напряжение. Опции блокировки обратных больших напряжений у запираемых элементов не предусмотрены. В связи с этим требуется его агрегация со встречным параллельным диодом-полупроводником.

Существенное падение прямых напряжений является основной отличительной особенностью запираемого тиристора. Для его отключения необходимо выполнить подачу мощного импульсного тока на управляющий вывод. При этом длительность импульса должна быть максимально низкой (от 10 до 100 мкс). Отрицательное соотношение с прямым током составляет пропорцию 1/5. Итоговая разница предельного напряжения рассматриваемого прибора на 25% меньше, чем у обычного аналога.

Тиристор принцип работы - изображение 58 - изображение 58

В заключение

Нами были рассмотрена классификация тиристоров и их особенности. Можно сделать следующий вывод: данные приспособления представляют собой приборы, относящиеся критично к скоростям нарастания прямого напряжения и силы тока. Для тиристоров характерно протекание обратных токов, позволяющих быстро понизить значение в цепи до нулевой отметки. Для защиты элементов следует применять различные схемы, дающие возможность предохранить блок от высоких напряжений в динамическом режиме.

Тиристоры: определение, устройство, физические процессы, схемы, как работает

Тиристор принцип работы - изображение 59 - изображение 59

Тиристорами называют полупроводниковые приборы с двумя устойчивыми режимами работы (включен, выключен), имеющие три или более p-n-переходов.

Тиристор по своему принципу — прибор ключевого действия. Во включенном состоянии он подобен замкнутому ключу, а в выключенном — разомкнутому ключу. Те тиристоры, которые не имеют специальных электродов для подачи сигналов с целью изменения состояния, а имеют только два силовых электрода (анод и катод), называют неуправляемыми, или диодными, тиристорами (динисторами). Иначе тиристоры называют управляемыми тиристорами, или просто тиристорами.

Они являются основными элементами в силовых устройствах электроники, которые называют также устройствами преобразовательной техники. Типичными представителями таких устройств являются управляемые выпрямители (преобразуют переменное напряжение в однонаправленное) и инверторы (преобразуют постоянное напряжение в переменное). Динисторы, как правило, используются в слаботочных импульсных устройствах.

Существует большое количество различных тиристоров. Для определенности вначале обратимся к так называемому управляемому по катоду незапираемому тиристору с тремя выводами (два силовых и один управляющий), который проводит ток только в одном направлении.

Дадим упрощенное изображение структуры тиристора (рис. 1.109) и его условное графическое обозначение (рис. 1.110).

Тиристор принцип работы - фото 60 - изображение 60

рис. 1.109 turion

Тиристор принцип работы - фотография 61 - изображение 61

рис. 1.100 turion

Обратимся к простейшей схеме с тиристором (рис. 1.111), где использованы следующие обозначения:

ia — ток анода (силовой ток в цепи анод-катод тиристора);

uак— напряжение между анодом и катодом;

iy — ток управляющего электрода (в реальных схемах используют импульсы тока);

uук— напряжение между управляющим электродом и катодом;

uпит— напряжение питания.

Тиристор принцип работы - изображение 62 - изображение 62

рис. 1.111 turion

Предположим, что напряжение питания меньше так называемого напряжения переключения uпеp(uпит<uпеp) и что после подключения источника питания импульс управления на тиристор не подавался. Тогда тиристор будет находиться в закрытом (выключенном) состоянии. При этом p-n-переходы П1 и П3 будут смещены в прямом направлении, а переход П2 — в обратном направлении (см. рис. 1.109), поэтому ток тиристора будет малым (ia = 0) и будут выполняться соотношения uак=uпит, uR = 0 (нагрузка отключена от источника питания).

Если предположить, что выполняется соотношение uпит>uпеp или что после подключения источника питания (даже при выполнении условия uпит<uпеp) был подан импульс управления достаточной величины, то тиристор будет находиться в открытом (включенном) состоянии. При этом все три перехода будут смещены в прямом направлении и будут выполняться соотношения uак~ 1В, ia =uпит/ Rн, uR =uпит (т. е. нагрузка оказалась подключенной к источнику питания).

Существуют тиристоры, для которых напряжение uпеp больше, чем 1кВ, а максимально допустимый ток ia больше, чем 1кА.

При изучении принципа работы тиристора очень важно понять, что происходит в момент его включения и почему переход П2 во включенном состоянии смещен в прямом направлении. Для соответствующих объяснений обратимся к условному изображению структуры тиристоpa (рис. 1.112).

Тиристор принцип работы - фотография 63 - изображение 63

рис. 1.112 turion

Можно заметить, что такая структура соответствует схеме на двух транзисторах (рис. 1.113).

Тиристор принцип работы - фотография 64 - изображение 64

рис. 1.113 turion

Вначале рассмотрим процесс включения тиристора при uак=uпеp и iy = 0 (так называемое включение по аноду), однако такой способ включения не рекомендуется использовать на практике.

Имеют место соотношения:

i к1=αст1·iэ1+iко1iк2=αст2·iэ2+iко2 где αст1,αст2,iко1,iко2— соответственно статические коэффициенты передачи токов эмиттеров и обратные токи коллекторов транзисторов Т1 и Т2.

Обозначим через iко общий обратный ток p-n-перехода П2, тогда iко =iко1+iко2 Получим iа=iэ1=iэ2=iк1+iк2 Откуда iа=αст1·iа+αст2·iа+iкоiа=iко/ [ 1- (αст1+αст2) ]

Как уже отмечалось, коэффициенты передачи токов транзисторов изменяются при изменении режимов работы транзисторов.

При малых токах αст1+αст2<< 1 и через тиристор протекает ток ia ≈iко. При увеличении напряжения uак ток i ко возрастает, и вместе с этим возрастают коэффициенты αст1и αст2. При приближении суммы αст1 αст2 к единице ток ia резко, скачкообразно возрастает и тиристор переходит в открытое (включенное) состояние, после чего ток в схеме ограничивается только сопротивлением нагрузки Rн. Время, в течение которого тиристор переходит во включенное состояние, составляет доли микросекунды или единицы микросекунд (это так называемое время включения tвкл).

Так как токи баз транзисторов велики и приближаются по своим значениям к токам коллекторов, оба транзистора находятся в режиме насыщения. Это означает, что переход П2 тиристора смещен в прямом направлении.

Процесс включения тиристора можно объяснить и не прибегая к представлению тиристора в виде двух транзисторов. Но и при таком анализе вывод остается прежним: переход П2 во включенном состоянии смещен в прямом направлении. Такое состояние перехода П2 обеспечивается наличием избыточной (по сравнению с выключенным состоянием тиристора) концентрацией в слоях n1 и p2 неосновных и основных носителей электричества. Это означает, что во включенном состоянии в указанных слоях имеются избыточные заряды.

Динисторы, естественно, могут включаться только по аноду.

Теперь рассмотрим процесс включения тиристора при подаче импульса управления и при условии, что uак<uпеp(так называемое включение по управляющему электроду). Это рекомендуемый способ включения.

Обратимся к эквивалентной схеме на двух транзисторах (см. рис. 1.113). Легко увидеть, что подача положительного напряжения на управляющий электрод относительно катода вызывает появление тока базы транзистора Т2. Это приводит к включению транзисторов эквивалентной схемы, т. е. к включению тиристора, причем, чем больше ток управления, тем при меньшей величине напряжения uак происходит включение тиристора. После окончания импульса управления тиристор остается включенным.

Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.

Для выключения тиристора на практике на него подают обратное напряжение uак< 0 и поддерживают это напряжение в течение времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд. За это время избыточные заряды в слоях n1 и р2 исчезают. Для выключения тиристора напряжение питания uпи тв приведенной выше схеме (см. рис. 1.111) должно изменить полярность.

После указанной выдержки времени на тиристор вновь можно подать прямое напряжение (uак> 0), и он будет выключенным до подачи импульса управления.

Тиристор выключается также в случае, когда обратное напряжение не подается, но ток ia уменьшается до некоторой малой величины, называемой током удержания iуд. При этом напряжение на тиристоре увеличивается скачкообразно. Такой способ выключения на практике используется редко, так как время выключения при этом оказывается значительным.

Существуют так называемые запираемые тиристоры, которые могут быть выключены с помощью тока управления.

Если на тиристор подано обратное напряжение uак< 0, то переходы П1 и П3 смещаются в обратном направлении и через тиристор протекает малый обратный ток.

Существуют и широко используются так называемые симметричные тиристоры (симисторы, триаки). Каждый симистор подобен паре рассмотренных тиристоров, включенных встречно-параллельно (рис. 1.114). Дадим условное графическое обозначение симистора (рис. 1.115).

Тиристор принцип работы - фотография 65 - изображение 65

рис. 1.114 рис. 1.115 turion

Тиристоры, принцип действия и разновидности. Характеристики. Область использования

Тиристор принцип работы - изображение 66 - изображение 66

Тиристором называют полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт), то есть является запоминающим устройством. В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый динистор, или своего рода ключ, который управляет мощной силовой частью при подаче слабых управляющих импульсов. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).

Тиристор принцип работы - изображение 67 - изображение 67

Устройство тиристора

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры представлена на рис. 1. Она представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).

Принцип действия тиристора:

Тиристор имеет два силовых контакта, пропускающих рабочий ток (катод и анод) и могут иметь управляющий электрод. Тиристор может находиться в двух состояниях: закрытом и открытом. Эти состояния обладают существенно различным сопротивлением между силовыми электродами. В закрытом состоянии сопротивление велико и ток через тиристор не идёт. Открывается тиристор при достижении между силовыми электродами напряжения открывания или током на управляющем электроде. В открытом состоянии сопротивление тиристора резко падает и он проводит ток. Закрытие тиристора происходит при отключении тока или смене его знака.

Разновидности тиристоров:

Функционально тиристоры различаются на обладающие односторонней и двусторонней проводимостью, и также имеющие управляющий электрод и не имеющие его.

динистор (диодный тиристор, диод Шокли) — тиристор с односторонней проводимостью без управляющего электрода;

тринистор (триодный тиристор или просто тиристор) — то же с управляющим электродом.

симистор — двунаправленный тиристор.

Тиристоры с односторонней проводимостью в обратном направлении всегда закрыты. В соответствии с направлением, к котором тиристор может пропускать ток, силовые электроды именуются катодом и анодом (отрицательный и положительный электроды соответственно). Тиристоры с двусторонней проводимостью (симисторы) могут пропускать ток в обоих направлениях, таким образом их возможно применять для управления переменным током.

Характеристики тиристоров:

Современные тиристоры изготовляют на токи от 1 мА до 10 кА напряжения от нескольких В до нескольких кВ; скорость нарастания в них прямого тока достигает 109 А/сек, напряжения — 109 В/сек, время включения составляет величины от нескольких десятых долей до нескольких десятков мкс, время выключения — от нескольких единиц до нескольких сотен мкс; кпд достигает 99 %.

Применение:

Электронные ключи

Управляемые выпрямители

Преобразователи (инверторы)

Регуляторы мощности (триммеры)

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами  и  соседкой тетей Валей килограммов под двести и  вы перемещаетесь с этажа на этаж.  Как  же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора.  Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят  как-то вот так:

Тиристор принцип работы - фото 68 - изображение 68

Тиристор принцип работы - изображение 69 - изображение 69

Тиристор принцип работы - фотография 70 - изображение 70

А вот и  схемотехническое обозначение тиристора

Тиристор принцип работы - фотография 71 - изображение 71

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристор принцип работы - изображение 72 - изображение 72

Тиристор принцип работы - фото 73 - изображение 73

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Тиристор принцип работы - изображение 74 - изображение 74

Тиристор принцип работы - изображение 75 - изображение 75

Тиристор принцип работы - изображение 76 - изображение 76

Тиристор принцип работы - фото 77 - изображение 77

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами  тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uyотпирающее постоянное напряжение управления  – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max –  обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос срсреднее значение тока, которое может протекать через тиристор  в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

Тиристор принцип работы - фото 78 - изображение 78

А вот и его цоколевка

Тиристор принцип работы - фотография 79 - изображение 79

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

Тиристор принцип работы - фото 80 - изображение 80

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Тиристор принцип работы - фото 81 - изображение 81

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uyотпирающее постоянное напряжение управления  больше чем 0,2 Вольта.  Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

Тиристор принцип работы - фотография 82 - изображение 82

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Тиристор принцип работы - изображение 83 - изображение 83

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Тиристор принцип работы - фотография 84 - изображение 84

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения.  Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

Тиристор принцип работы - изображение 85 - изображение 85

Тиристор принцип работы - фотография 86 - изображение 86

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает.  На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

Тиристор принцип работы - изображение 87 - изображение 87

После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Тиристор принцип работы - фотография 88 - изображение 88

Почему же тиристор закрылся? Ведь лампочка  в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

Тиристоры и схемы коммутации мощной нагрузки

Тиристор принцип работы - фотография 89 - изображение 89

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.

Тиристор – краткий обзор полупроводника

Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод «У». Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода «K», с точки зрения регенеративной фиксации.

Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.

После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала «У».

Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры «MCT».

Тиристор принцип работы - фото 90 - изображение 90

Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал

Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения.

Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.

Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника.

Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.

Тиристор в цепи постоянного напряжения

При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.

Тиристор принцип работы - фото 91 - изображение 91

Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1. Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только активировать (нажать) кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.

Тиристор принцип работы - фото 92 - изображение 92

Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Тиристор в цепи переменного тока

При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.

Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».

Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.

Благодаря  диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У. Положительным полупериодом синусоидальной формы сигнала устройство смещено прямо вперёд. Однако при выключенном переключателе КН1 к тиристору подводится нулевой ток затвора и прибор остается «выключенным».

В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.

Тиристор принцип работы - фото 93 - изображение 93

Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт

Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным». Но в результате достижения достаточного положительного триггерного напряжения (возрастания  тока управления) на электроде У, тиристор переключится в состояние «включено».

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидный момент, учитывая падение тока анода ниже текущего значения.

На момент следующего отрицательного полупериода, устройство полностью «отключается» до прихода следующего положительного полупериода. Затем процесс вновь повторяется.

Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.

Управление половинной волной

Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока. Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.

На момент положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы. Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1.

Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено». Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.

Тиристор принцип работы - изображение 94 - изображение 94

Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости

Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.

В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.

Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.

Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью. Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.

Полный технический расклад тиристора на видео

Видеоматериал, представленный здесь — продолжение знакомства с тиристорами непосредственно глазами. Совмещение текстовой и видео информации открывает способ лучшего понимания темы. Поэтому, рекомендовано смотреть «кино» о тиристорах:

По материалам: Electronics-tutorials

Контент: Тиристоры и схемы коммутации мощной нагрузки изначально появился на Zetsila.

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 193)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты