Устройство и принцип работы рдук

Регуляторы давления газа служат для понижения давления в системах газоснабжения до заданных норм и автоматического поддержания этого давления на заданном уровне.

Регулятор давления конструкции Казанцева (РДУК). - изображение 1

Они состоят из:

- регулирующего клапана с мембранным приводом (исполнительный механизм);

- регулятор давления (пилот);

- дроссели и соединительные трубки.

Газ начального давления до поступления в регулятор управления проходит через фильтр, что улучшает условия работы пилота.

Мембрана регулятора по периферии зажата между корпусом и крышкой мембранной коробки, а в центре между плоским и чашеобразным дисками. Чашеобразный диск упирается в проточку крышки, что обеспечивает центрирование мембраны перед её зажимом.

Середина гнезда тарелки мембраны упирается в толкатель, а на него давит шток, который свободно перемещается в колонне. На верхний конец штока свободно навешен золотник клапана. Плотное закрытие седла клапана обеспечивается за счёт массы золотника и давления газа на него.

Газ выходящий из пилота, по импульсной трубке поступает под мембрану регулятора и частично по трубке сбрасывается в газопровод. Для ограничения этого сброса в месте соединения трубки с газопроводом устанавливают дроссель диаметром 2 мм., за счёт чего достигается получение необходимого давления газа под мембраной регулятора при незначительном расходе газа через пилот.

Импульсная трубка соединяет надмембранную полость регулятора с выходным газопроводом. Надмембранная полость пилота также сообщается с выходным газопроводом через импульсную трубку.

Если давление газа по обе стороны мембраны одинаково, то клапан регулятора закрыт.

Клапан может быть открыт только в том случае, если давление газа под мембраной достаточно для преодоления давления газа на клапан сверху и преодоления силы тяжести мембранной подвески. Колебание газа после регулятора не должно превышать ±10%.

Регулятор давления работает следующим образом:

Газ начального давления из подкапанной камеры регулятора попадает в пилот. Пройдя клапан пилота, газ двигается по импульсной трубке, проходит через дроссель и поступает в газопровод после регулирующего клапана.

Клапан пилота дроссель и импульсные трубки представляют собой усилительное устройство дроссельного типа.

Импульс конечного давления воспринимаемый пилотом усиливается дроссельным устройством, трансформируется в командное давление и по трубке передаётся в подмембранное пространство исполнительного механизма, перемещая регулирующий клапан.

При уменьшении расхода газа давление после регулятора начинает возрастать.

Это передаётся по импульсной трубке на мембрану пилота, который опускается вниз, закрывая клапан пилота. В этом случае газ с высокой стороны по импульсной трубке не может пройти через пилот.

Поэтому давление газа под мембраной постепенно уменьшается. Когда давление под мембраной окажется меньше силы тяжести тарелки и давления, оказываемого клапаном регулятора, а также давления газа на клапан сверху, то мембрана пойдёт вниз, вытесняя газ из мембранной полости через импульсную трубку на сброс.

Клапан постепенно начинает закрываться, уменьшая отверстие для прохода газа. Давление после регулятора понизится до заданной величины.

При увеличении расхода газа давление после регулятора уменьшается.

Это передаётся по импульсной трубке на мембрану пилота, которая под действием пружины идёт вверх, открывая клапан пилота.

Газ с высокой стороны по импульсной трубке поступает на клапан и затем по импульсной трубке идёт на мембрану регулятора.

Часть газа идёт на сброс по импульсной трубке, а часть на мембрану.

Давление газа под мембраной регулятора возрастает и, преодолевая массу мембранной подвески и давление газа на клапан, перемещает мембрану вверх.

Клапан регулятора при этом открывается, увеличивая отверстие для прохода газа. Давление газа после регулятора повышается до заданной величины.

Регуляторы давления РДУК - фотография 2

 

Регуляторы давления газа РДУК-50, РДУК-100, РДУК-200 - фото 4

Модификации

РДУК выпускаются в различных модификациях:

с высоким давлением, Ду 100 мм и седлом диаметром 70 мм;

с низким давлением, Ду 50 мм и седлом диаметром 35 мм;

с высоким давлением, Ду 200 мм и седлом диаметром 140 мм;

с низким давлением, Ду 200 мм и седлом диаметром 105 мм.

Принцип работы

Снижение давления газа в регуляторе давления РДУК происходит за счет перемещения тарельчатого плунжера с резиновым уплотнителем относительно седла регулирующего клапана. Плунжер приводится в движение разницей входного давления (воздействует на тарелку сверху) и выходного давления (воздействует снизу).

Газ с высоким (входным) давлением проходит через фильтр и подается на малый клапан пилота. Затем он через демпфирующий дроссель (калиброванное отверстие) подается под мембрану регулирующего клапана. Излишний объем газа из подмембранного пространства сбрасывается в газопровод посредством сбросного дросселя.

Импульсы выходного давления поступают по соединительным трубкам на мембраны пилота и регулирующего клапана. Под мембраной регулирующего клапана всегда поддерживается давление выше выходного. Оно автоматически корректируется малым клапаном пилота (в зависимости от расхода газа и уровня входного давления). Этой разницей давлений обусловлена подъемная сила мембраны.

Даже при незначительном отклонении выходного давления от заданного значения меняется давление в подмембранном пространстве. Это, в свою очередь, вызывает перемещение основного клапана. Таким образом выходное давление постоянно поддерживается на требуемом уровне.

Преимущества

— широкий диапазон настройки выходного давления;

— относительно небольшие габаритные размеры и масса;

— высокая пропускная способность;

— возможность настройки параметров регулятора без прекращения подачи газа.

Типы регуляторов

По принципу действия:

· прямой;

· непрямой.

Регулятор прямого действия – это перестановка регулирующего органа за счет энергии, передаваемой мембране, при изменении величины конечного давления газа.

Регулятор состоит из следующих элементов:

· Регулирующего клапана с мембранным приводом;

· Регулятора управления (пилот);

· Дросселей и соединительных трубок.

Газ начального давления до поступления в регулятор управления проходит через фильтр, что улучшает работу пилота.

Регуляторы давления газа РДУК-50, РДУК-100, РДУК-200

Предназначены для снижения давления газа в газопроводах с высокого на высокое, среднее и низкое давление, а также со среднего на среднее и низкое.

Регуляторы могут быть использованы на закольцованных и тупиковых городских сетях, регуляторных станциях, на промышленных и коммунально-бытовых газифицированных объектах.

Эти регуляторы относятся к регуляторам непосредственного действия с командным прибором.

Надмембранное пространство регулятора управления импульсной трубкой соединяется с газопроводом за регулятором давления. Таким образом, давление над мембраной регулятора управления всегда равно давлению газа в газопроводе. Регуляторы Давления типа РДУК-2 разработаны на условные проходы 50, 100 и 200 мм. Давление под мембраной регулятора управления равно атмосферному. Когда давление в газопроводе равно установленному, усилие от давления газа на мембрану регулятора управления равно усилию пружины. При этом клапан регулятора управления частично открыт.

При понижении давления в газопроводе пружина преодолевает усилие от давления газа на мембрану, в результате чего последняя поднимается кверху, увеличивая открытие клапана. При повышении давления открытие клапана уменьшается. Расход; газа, протекающего через клапан регулятора управления, пропорционален величине его открытия. Для установки регулятора управления на требуемое давление изменяют сжатие пружины.

Головка регулятора управления трубкой соединяется с подмембранным пространством регулирующего клапана, которое соединено трубкой с подклапанным пространством. Чтобы регулирующий клапан начал действовать, давление в подмембранном пространстве должно создать усилие, больше суммы усилий, создаваемых входным давлением на клапан и выходным давлением на мембрану в надмембранном пространстве.

Необходимый перепад давления между подмембранным и над-мембранным пространством создается благодаря наличию дросселей в трубках.

В качестве командного прибора применяются регуляторы управления КН2 и КВ2.

Регуляторы давления типа РДУК-2 изготавливаются Московским заводом газовой аппаратуры и Саратовским заводом «Газоаппарат».

В настоящее время выпускаются регуляторы нового типа — блочные конструкции Ф. Ф. Казанцева (РДБК). Они отличаются универсальностью и повышенной надежностью в работе. Неравномерность выходного давления при использовании РДБК меньше, чем при использовании РДУК.

Устройство и принцип работы рдук - фотография 8 Устройство и принцип работы рдук - фотография 9
РДУК-200

РДУК изготавливается в следующих исполнениях:

  • РДУК-50Н(В) Ду-50 с низким или высоким выходным давлением и диаметром седла 35 мм - РДУК-50Н(В)/35;
  • РДУК-100Н(В) Ду-100 с низким или высоким выходным давлением и диаметром седла 50, 70 мм - РДУК-100Н(В)/50(70);
  • РДУК-200Н(В) Ду-200 с низким или высоким выходным давлением и диаметром седла 105, 140 мм - РДУК-200Н(В)/105(140).

Диаметр седла влияет на пропускную способность регулятора - чем больше седло, тем больше пропускная способность. Используется в системах газоснабжения различных объектов. Устанавливаются в газораспределительных станциях (ГРУ, ГРПШ, ГРПБ) систем подачи газа.

Устройство и принцип работы рдук - фотография 10 Продольный разрез и схема присоединения регулятора РДУК-100

Устройство и принцип работы рдук - фотография 11

Обслуживание регулятора РДУК

До включения регулятора стакан пилота должен быть вывернут до полного расслабления пружины. Все запор­ные устройства перед регулятором и на импульсной трубке должны быть полностью открытыми. При включе­нии сначала открывают кран на свечу, с тем чтобы обе­спечить небольшой расход газа, а затем медленно вверты­вают регулировочный стакан пилота. Его пружина сжи­мается, в контролируемой точке появляется давление, фиксируемое по манометру. Дальнейшим ввертыванием стакана повышают выходное давление примерно до за­данного и создают расход газа. После этого производят более точную настройку регулятора. При отключении регулятора на длительное время регулировочный стакан пилота вывертывают до полного ослабления пружины.

Для осмотра входной части КР снимают верхнюю крышку корпуса, вынимают фильтр и плунжер со штоком. Фильтр тщательно очищают от пыли, при необходимости промывают и высушивают. Плунжер, седло, направляющие втулки колонки, шток и толкатель про­тирают мягкой ветошью, уплотняющую шайбу плунжера при видимом износе заменяют новой. Шток плунжера должен свободно перемещаться во втул­ках колонки. Контроль хода штока производят через пробку в нижней крышке мембранной коробки.

Смазка трущихся металлических поверхностей регу­лятора допускается только при тонкой очистке газа от механических примесей в фильтре, установленном перед регулятором.

Мембрану осматривают при снятой нижней крышке мембранной коробки. Правильная центровка мембраны при сборке обеспечивается установкой опорной чашки в кольцевой проточке нижней крышки. При осмотре следует тщательно продуть дроссели внутри специаль­ных болтов.

Для осмотра регулирующего узла пилота вывертывают верхнюю пробку крестовины и вынимают плунжер. Если засорение сильное, то отвертывают нажимную втулку седла, вынимают седло с прокладкой и внутреннюю полость крестовины продувают. При осмотре и сборке мембранного узла следует следить, чтобы толкатель плун­жера своим острым концом находился в гнезде стяжного болта мембраны, а в верхнее коническое углубление тол­кателя попадал нижний конец шпильки плунжера. Если нажимать на мембрану снизу, то сначала должен наблю­даться холостой ход не менее 2 мм, а затем подниматься на 1,5—2 мм плунжер. Эту степень открытия можно установить подгонкой длины шпильки.

У регулятора с пилотом КН2 при настройке выход­ного давления на 0,02—0,03 кг/см2 погрешность регули­рования может достигать 15 %, при настройке на 0,5— 0,6 кгс/сма может оказаться ниже 1—2 %. В последнем случае возможно неустойчивое регулирование, и тогда приходится снижать чувствительность пилота, используя в нем пружину КВ2. В общем случае возможность появ­ления неустойчивого регулирования возрастает с увели­чением входного давления и уменьшением расхода газа. Для повышения устойчивости регулирования на трубке б устанавливают дроссель диаметром 3, 4 или 6 мм соот­ветственно для регуляторов Dy 50, 100 и 200 мм.

Причинами нарушения режима работы регулятора в процессе эксплуатации являются: засорение клапанного устройства пилота, заедание штока плунжера КР или шпильки плунжера пилота, обмерзание плунжера, засо­рение дросселей на обвязочных трубках регулятора.

Так как чаще всего наблюдается засорение седла в пи­лоте и дросселей, то с них и следует начинать осмотр. Дроссельные, импульсные и обвязочные трубки регуля­тора тщательно продувают. При необходимости замены шпильки плунжера пилота ее изготовляют из прямого отрезка стальной пружинной проволоки диаметром 1,4 мм. Концам шпильки придают сферическую форму.

Неполадки

пружина пилота полностью ослаблена, однако вы­ходное давление достигает или превышает 20% номи­нального.

Причина — негерметичность регулирующего органа регулятора. Производится осмотр уплотняющих поверхностей седла и плунжера, при необходимости у последнего заменяют резиновую прокладку:

выходное давление падает до нуля.

Причина - разрыв мембраны регулятора,  требуется замена.

— выходное давление непрерывно растет.

Причины — разрыв мембраны пилота, засорение седла или заедание толкателя плунжера, пилота в направляющих. Мембрану заменить, прочистить седло пилота и устранить заедание толкателя;

- выходное давление при настройке в пределах 0,2-J 0,6 кгс/см2 сильно колеблется.

Следует установить дрос­сель на трубке 6, а при сохранении колебаний уменьшить чувствительность пилота КН2, использовав в нем пру­жину от КВ2;

- выходное давление сильно колеблется при малых расходах газа независимо от давления настройки.

При­чина - большая пропускная способ­ность регулятора. Если устранение колебаний не дости­гается установкой дросселя на трубке 6, то снижают входное давление, а при необходимости применяют седло и плунжер регулятора меньших размеров;

— выходное давление постепенно уменьшается, вре­менами резко возрастает и вновь снижается почти до нуля.

Причина — обмерзание плунжера и седла пилота. Устраняется обогревом пилота тряпкой, смоченной в горячей воде;

— выходное давление постепенно уменьшается и под­жатое пружины пилота его не повышает.

Причины — засорение фильтра или седла пилота, выпадение уплот­няющей резинки плунжера, поломка настроечной пру­жины. Фильтр следует прочистить, седло прочистить и продуть, резинку и пружину заменить новыми;

— выходное давление изменяется одновременно с из­менением входного давления.

Причины — перепутаны ме­ста установки дросселей d и dx или дроссели вообще не установлены. Следует проверить наличие дросселей и правильность их установки.

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 15 чел.
Средний рейтинг: 4.1 из 5.

Оставить комментарий:

Комментарий #116
спасибо
Ольга, 2 года назад Ответить
Отправить

Полезные сервисы:

Опрос:
Чтобы проголосовать, кликните на нужный вариант ответа.