Варистор принцип работы

Что такое варистор, применение, принцип работы и схемы

Что такое варистор, применение, принцип работы и схемы - фото 1 - изображение 1

В данной статье мы подробно разберем что такое варистор. Опишем принцип его работы и конструкцию, области применения, характеристики, а так же типы.

Описание и принцип работы

В отличие от плавкого предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перенапряжения посредством фиксации напряжения аналогично стабилитрону. Купить варистор на Алиэкспресс:

Описание и принцип работы - фото 2 - изображение 2

Слово «варистор» представляет собой сочетание слов VARI-able resi-STOR, используемыми для описания их режима работы еще в первые дни развития, который является немного неверным, так как варистор не может вручную изменять как, например потенциометр или реостат.

Переходные формы волны переменного тока - фотография 3 - изображение 3

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет значение своего сопротивления при изменении напряжения на нем, что делает его нелинейным резистором, зависящим от напряжения, или сокращенно VDR.

В настоящее время резистивный корпус варистора изготовлен из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор по размеру и конструкции похож на конденсатор, и его часто путают с ним. Однако конденсатор не может подавить скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для цепи, поэтому варистор играет важную роль в защите чувствительных электронных схем от пиков переключения и перенапряжений.

Переходные скачки происходят из множества электрических цепей и источников независимо от того, работают ли они от источника переменного или постоянного тока, поскольку они часто генерируются в самой цепи или передаются в цепь от внешних источников. Переходные процессы в цепи могут быстро возрастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены в чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных напряжений является эффект L (di / dt), вызываемый переключением индуктивных катушек и намагничивающими токами трансформатора, приложениями переключения двигателей постоянного тока и скачками напряжения при включении цепей флуоресцентного освещения или других скачков напряжения питания.

Переходные формы волны переменного тока

Варистор статического сопротивления - фотография 4 - изображение 4

Варисторы подключены в цепях через сеть питания либо между фазой и нейтралью, либо между фазами для работы от переменного тока, либо с положительного на отрицательный для работы от постоянного тока, и имеют номинальное напряжение, соответствующее их применению. Варистор также можно использовать для стабилизации напряжения постоянного тока и особенно для защиты электронных цепей от импульсов перенапряжения.

Варистор статического сопротивления

Кривая характеристик варистора - изображение 5 - изображение 5

При нормальной работе варистор имеет очень высокое сопротивление, отсюда и его название, и работает аналогично стабилитрону, позволяя более низким пороговым напряжениям проходить без изменений.

Однако, когда напряжение на варисторе (любой полярности) превышает номинальное значение варисторов, его эффективное сопротивление сильно уменьшается с ростом напряжения, как показано выше.

Из закона Ома мы знаем, что вольт-амперные характеристики (IV) фиксированного резистора являются прямой линией при условии, что R поддерживается постоянным. Тогда ток прямо пропорционален разности потенциалов на концах резистора.

Но кривые IV варистора не являются прямой линией, так как небольшое изменение напряжения вызывает значительное изменение тока. Типичная нормализованная кривая зависимости напряжения от тока для стандартного варистора приведена ниже.

Кривая характеристик варистора

Значения емкостного сопротивления - изображение 6 - изображение 6

Из вышесказанного видно, что варистор обладает симметричными двунаправленными характеристиками, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоидальной формы волны, действуя аналогично двум стабилитронам, подключенным вплотную. Если не проводящая, кривая IV показывает линейную зависимость, так как ток, протекающий через варистор, остается постоянным и низким только при нескольких микроамперах тока утечки. Это связано с его высоким сопротивлением, действующим в качестве разомкнутой цепи, и остается постоянным до тех пор, пока напряжение на варисторе (любой полярности) не достигнет определенного «номинального напряжения».

Это номинальное или зажимное напряжение — это напряжение на варисторе, измеренное с указанным постоянным током 1 мА. То есть уровень постоянного напряжения, приложенного к его клеммам, который позволяет току 1 мА течь через резистивный корпус варисторов, который сам зависит от материалов, используемых в его конструкции. На этом уровне напряжения варистор начинает переходить из своего изоляционного состояния в проводящее состояние.

Когда переходное напряжение на варисторе равно или превышает номинальное значение, сопротивление устройства внезапно становится очень малым, превращая варистор в проводник из-за лавинного эффекта его полупроводникового материала. Ток небольшой утечки, протекающий через варистор, быстро возрастает, но напряжение на нем ограничено уровнем чуть выше напряжения варистора.

Другими словами, варистор саморегулирует переходное напряжение через него, позволяя большему току течь через него, и из-за его крутой нелинейной кривой IV он может пропускать широко варьирующиеся токи в узком диапазоне напряжений, срезая любые скачки напряжения.

Значения емкостного сопротивления

Поскольку основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик, ниже его напряжения зажима варистор действует как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.

При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что приложенное напряжение не увеличивается выше уровня напряжения зажима и резко падает вблизи своего максимального номинального постоянного напряжения постоянного тока.

Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в области непроводящей утечки его характеристик IV. Поскольку они обычно соединены параллельно с электрическим устройством для защиты от перенапряжения, сопротивление утечки варисторов быстро падает с увеличением частоты.

Это соотношение приблизительно линейно с частотой, и полученное в результате параллельное сопротивление, его реактивное сопротивление переменного тока Xc может быть рассчитано с использованием обычного 1 / (2πƒC), как для обычного конденсатора. Затем, когда частота увеличивается, увеличивается и ток утечки.

Но наряду с варисторами на основе кремниевых полупроводников были разработаны варисторы на основе оксидов металлов, чтобы преодолеть некоторые ограничения, связанные с их кузенами из карбида кремния.

Металлооксидный варистор

Металл — оксид варистор или MOV для краткости, это резистор, зависящий от напряжения, в котором материал сопротивления представляет собой оксид металла, в первую очередь оксид цинка (ZnO), прессуют в керамики подобного материала. Металлооксидные варисторы состоят из приблизительно 90% оксида цинка в качестве керамического основного материала плюс другие наполнители для образования соединений между зернами оксида цинка.

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройства ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов. Использование металлического оксида в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных напряжений и имеют более высокие возможности обработки энергии.

Как и в случае обычного варистора, металлооксидный варистор запускает проводимость при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового напряжения. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV состоит в том, что ток утечки через материал из оксида цинка MOV очень мал, а при нормальных условиях эксплуатации его скорость срабатывания при переходных процессах зажима намного выше.

MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах. Конструкция типичного металлооксидного варистора имеет вид:

Конструкция металлического оксидного варистора

Металлооксидный варистор - изображение 7 - изображение 7

Чтобы выбрать правильное значение MOV для конкретного применения, желательно иметь некоторые знания об импедансе источника и возможной импульсной мощности переходных процессов. Для переходных процессов на входящей линии или фазе выбор правильного MOV немного сложнее, так как обычно характеристики источника питания неизвестны. В общем, выбор MOV для электрической защиты цепей от переходных процессов и скачков напряжения в сети часто не более чем обоснованное предположение.

Тем не менее, металлооксидные варисторы доступны в широком диапазоне напряжений варистора, от около 10 В до более 1000 В переменного или постоянного тока, поэтому выбор может быть полезен при знании напряжения питания. Например, при выборе MOV или кремниевого варистора в этом отношении его максимальное номинальное постоянное среднеквадратичное напряжение должно быть чуть выше максимального ожидаемого напряжения питания, скажем, 130 вольт среднеквадратичного значения для источника питания 120 вольт, и 260 вольт среднеквадратичного значения для напряжения 230 вольт.

Максимальное значение импульсного тока, которое будет принимать варистор, зависит от длительности переходного импульса и количества повторений импульсов. Можно предположить ширину переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс). Если пиковый импульсный ток недостаточен, варистор может перегреться и повредиться. Таким образом, чтобы варистор работал без сбоев или ухудшений, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно вернуться в свое предимпульсное состояние.

Применение варистора на схеме

Варисторы имеют много преимуществ и могут использоваться во многих различных типах устройств для подавления переходных процессов в сети от бытовых приборов и освещения до промышленного оборудования на линиях электропередач переменного или постоянного тока. Варисторы могут быть подключены непосредственно к электросети и к полупроводниковым переключателям для защиты транзисторов, полевых МОП-транзисторов и тиристорных мостов.

Применение варистора на схеме - фотография 8 - изображение 8

Резюме варистора

В этой статье мы увидели, что основная функция резисторазависимого от напряжения, или варистора, заключается в защите электронных устройств и электрических цепей от скачков напряжения, например, вызванных переходными процессами индуктивного переключения.

Поскольку такие варисторы используются в чувствительных электронных схемах, чтобы гарантировать, что, если напряжение внезапно превысит заранее определенное значение, варистор фактически станет коротким замыканием, чтобы защитить цепь, которую он шунтирует от чрезмерного напряжения, поскольку они способны выдерживать пиковые токи в сотни ампер.

Варисторы относятся к типу резисторов с нелинейной неомической характеристикой напряжения тока и являются надежным и экономичным средством защиты от переходных переключений и перенапряжений.

Они достигают этого, выступая в качестве блокирующего устройства с высоким сопротивлением при более низких напряжениях и как хорошее проводящее устройство с низким сопротивлением при более высоких напряжениях. Эффективность варистора в защите электрической или электронной схемы зависит от правильного выбора варистора в отношении рассеяния напряжения, тока и энергии.

Металлооксидные варисторы, или MOV, как правило, изготавливаются из материала металлического оксида цинка в форме небольшого диска. Они доступны во многих значениях для определенных диапазонов напряжения. Номинальное напряжение MOV, называемое «напряжение варистора», представляет собой напряжение на варисторе, когда через устройство пропускается ток 1 мА. Этот уровень напряжения варистора, по существу, является точкой на характеристической кривой IV, когда устройство начинает проводить. Металлооксидные варисторы также могут быть подключены последовательно для повышения номинального напряжения зажима.

В то время как металлооксидные варисторы широко используются во многих цепях силовой электроники переменного тока для защиты от переходных перенапряжений, существуют также другие типы полупроводниковых устройств подавления напряжения, таких как диоды, стабилитроны и ограничители, которые все могут использоваться при некотором напряжении переменного или постоянного тока.

Автор: Тимеркаев Борис

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Что такое варистор, основные технические параметры, для чего используется

Резюме варистора - фотография 9 - изображение 9

Каждый электронный прибор, который включен в сеть нуждается в защите от превышения пороговых значений тока или напряжения. Для защиты по току применяют различные плавкие предохранители и автоматические выключатели, а вот для предохранения устройства от перенапряжения чаще всего применяют варисторы. В данной статье мы рассмотрим принцип работы варистора, его характеристики, достоинства и недостатки этого электронного компонента.

Что такое варистор, основные технические параметры, для чего используется - фотография 10 - изображение 10

Что такое варистор и где применяется

Варистор –  это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.

Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.

Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.

Что такое варистор и где применяется - фотография 11 - изображение 11

Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.

Виды и принцип работы

При работе в нормальных условиях варистор имеет огромное сопротивление, которое может снижаться при превышении напряжением порогового значения.  То есть, если значительно повышается напряжение в цепи, то варистор переходит из изолирующего состояния в электропроводящее и за счет лавинного эффекта в полупроводнике стабилизирует напряжение с помощью пропускания через себя тока большой величины.

Варисторы могут работать с высоким и низким напряжением и, соответственно, подразделяются на две группы устройств, которые имеют одинаковый принцип работы:

  1. Высоковольтные: способные работать в цепях со значениями тока до 20 кВ (используются в защитных системах сетей и оборудования, в устройства защиты от импульсных перенапряжений).
  2. Низковольтные: номинальное напряжения для компонентов данного вида варьируется от 3 до 200 В (применяется для защиты электронных устройств и компонентов оборудования с током 0,1 – 1А и устанавливаются на входе или выходе источника питания).

Время срабатывания варистора при скачке напряжения составляет около 25 нс, что является отличным значением, но в некоторых случая недостаточным. Поэтому производители электронных компонентов разработали технологию изготовления smd-резистора, который имеет время срабатывания от 0,5 нс.

Виды и принцип работы - фото 12 - изображение 12

Варисторы всех типов изготавливают из карбида кремния или оксида цинка путем спекания данного материала со связующим веществом (смолы, глина, стекло) при высокой температуре. После получения полупроводникового элемента выполняется его металлизация с обеих сторон с припайкой металлических выводов для подключения.

Маркировка, основные характеристики и параметры

Каждый производитель варисторов маркирует свой продукт определенным образом, поэтому существует достаточно большое количество вариантов обозначений и их расшифровок. Наиболее распространенным российским варистором является К275, а популярными компонентами иностранного производства являются 7n471k, kl472m и другие.

Расшифровать обозначение варистора CNR-10d751k можно следующим образом: CNR – металлооксидный варистор; d – означает, что компонент в форме диска; 10 – это диаметр диска; 751 –напряжение срабатывания для данного устройства (расчёт происходит путём умножения первых двух цифр на 10 в степени равной третьей цифре, то есть 75 умножаем на 10 в первой степени получатся 750 В); k – допустимое отклонение номинального напряжения, которое равно 10 % в любую сторону (l – 15%, M – 20%, P – 25 %).

Основными характеристиками варисторов являются следующие параметры:

Классификационное напряжение – напряжение при определенных значениях тока, протекающего через варистор (обычно данное значение составляет 1 мА). Этот параметр является условным и не влияет на выбор устройства;

Максимально допустимое напряжение – диапазон напряжения (среднеквадратичное или действующее значение), при котором варистор начинает понижать свое сопротивление;

Максимальная энергия поглощения – характеристика, показывающая значение энергии, которую варистор рассеивает и не выходит из строя при воздействии одиночного импульса (измеряется в Джоулях);

Максимальный импульсный ток – нормирует время нарастания и длительность действия импульса тока (измеряется в Амперах);

Ёмкость – очень важный параметр, который измеряется при закрытом состоянии и заданной частоте (падает до нуля, если к варистору приложен большой ток);

Допустимое отклонение – отклонение от номинальной разности потенциалов в обе стороны (указывается в процентах).

Время срабатывания – промежуток времени, за который варистор переходит из закрытого состояния в открытое (обычно несколько десятков наносекунд).

Преимущества и недостатки варисторов

Важными преимуществами нелинейного резистора (варистора) является его стабильная и надежная работа с высокими частотами и большими нагрузками. Он применяется во многих устройствах, работающих с напряжениями от 3 В до 20 кВ, относительно прост и дешёв в производстве и эффективен в эксплуатации. Дополнительными важными преимуществами являются:

  • высокая скорость срабатывания (наносекунды);
  • длительный срок службы;
  • возможность отслеживания перепадов напряжения (безынерционный метод).

Маркировка, основные характеристики и параметры - изображение 13 - изображение 13

Несмотря на то, что данный электронный компонент имеет достаточно много преимуществ, он имеет и недостатки, которые влияют на его применение в различных системах. К ним можно отнести:

  • низкочастотный шум при работе;
  • старение компонента (утрата параметров со временем);
  • большая емкость: зависит от напряжения и типа элемента, находится в диапазоне от 70 до 3200 пФ и влияет на работоспособность устройства;
  • при максимальных значениях напряжения мощность не рассеивается – значительно перегревается и выходит из строя при длительных максимальных значениях напряжения.

Преимущества и недостатки варисторов - фото 14 - изображение 14

Подбор варистора

Чтобы правильно подобрать варистор для определенного устройства необходимо знать характеристики его источника питания: сопротивление и мощность импульсов переходных процессов. Максимально допустимое значение тока определяется в том числе длительностью его воздействия и количеством повторений, поэтому при установке варистора с заниженным значением пикового тока, он достаточно быстро выйдет из строя. Если говорить кратко, то для эффективной защиты прибора необходимо выбирать варистор с напряжением, имеющим небольшой запас к номинальному.

Также для безотказной работы такого электронного компонента очень важна скорость рассеивания поглощенной тепловой энергии и возможность быстро возвращаться в состояние нормальной работы.

Обозначение на схеме и варианты подключения варистора

На схемах варистор обычно обозначается, как обычный резистор, но с добавлением буквы U рядом с наклонной чертой. Эта черта и указывает в схемах на то, что данный элемент имеет зависимость сопротивления от напряжения в цепи. Также на электрической схеме этот элемент маркируется двумя буквами R и U с добавлением порядкового номера (RU1, RU2 … и т.д.).

Подбор варистора - фотография 15 - изображение 15

Существует большое количество вариантов подключения варисторов, но общее для всех способов – это то, что данный компонент подключается параллельно цепи питания. Поэтому при отсутствии опасных значений импульсов напряжения, ток, который протекает через варистор имеет малую величину (ввиду больших значений сопротивления) и никак не влияет на работоспособность системы. При возникновении перенапряжения, варистор изменяет сопротивление до малых величин, нагрузка шунтируется, и поглощенная энергия рассеивается в окружающее пространство.

Как проверить варистор мультиметром — пошаговая инструкция

Обозначение на схеме и варианты подключения варистора - изображение 16 - изображение 16

От перепадов напряжения не застрахована ни одна электросеть, есть множество причин вызывающих это явление, начиная от перегрузки и заканчивая перекосом фаз. Такие броски способны вывести из строя бытовую технику, поэтому практически все современные электронные устройства имеют защиту. Если после очередного перепада в БП какого-нибудь прибора сгорел предохранитель, произведя его замену, не спешите включать технику. На всякий случай проверьте варистор на исправность тестером или мультиметром.

Прежде, чем перейти к тестированию, рекомендуем ознакомиться с кратким описанием варистора, особенностями его работы и характеристиками. Эта информация может быть полезной при поиске аналога, взамен вышедшего из строя элемента.

Показать ещё (1)

«…бесконечно большим…»? — Как тогда прозвонить? Может он в обрыве(сгорел), тогда тоже бесконечно большое сопротивление…

Варистор: принцип действия, основные параметры и характеристики

Как проверить варистор мультиметром — пошаговая инструкция - фото 17 - изображение 17

Варистор: принцип действия, основные параметры и характеристики - фотография 18 - изображение 18

Варистор используется в радиоэлектронике и устанавливается для обеспечения защиты приборов от скачков напряжения. Его сопротивление может меняться и зависит от напряжения, подаваемого на прибор, варьируется в диапазоне от 100 Мом до 10 Ом. Как работают варисторы, их принцип действия, основные характеристики и параметры — при желании в этих вопросах можно разобраться и неспециалисту.

Содержание

  • Принцип действия устройства
  • Классификация и преимущества
  • Технология изготовления и параметры
  • Маркировка и обозначения

Принцип действия устройства

В стандартных условиях варистор имеет большое сопротивление, но при превышении нормы напряжения сопротивление опускается, а ток благодаря лавинному эффекту возрастает. В самом приборе в этот момент напряжение немного превышает норму.

В таком режиме его работу можно сравнить со стабилитроном. При проектировании цепи с подключением варистора необходимо иметь в виду, что у него также имеется ёмкость. Объем этой ёмкости обратно пропорционален толщине и прямо пропорционален площади.

Чтобы верно выбрать нужный элемент, защищающий от перегрузки питания, следует учитывать не только мощность импульсов, но и входное сопротивление, которые появляются при переходных процессах. Если прибор будет неправильно подобран, и его максимальное значение окажется мало, то он сильно нагреется, что послужит выводу из строя как самого прибора, так и, возможно, устройства в целом.

Классификация и преимущества

Принцип действия устройства - фото 19 - изображение 19

Классификация полупроводниковых резисторов производится по рабочему напряжению. Напряжение разделяют на следующие виды: до 20 кВ и от 2,8 до 220 В.

Первые из них называются высоковольтными. Они нашли своё применение в электронных сетях, а вторые называются низковольтными и монтируются в электроприборы и бытовые устройства с целью защиты.

Из преимуществ этого прибора нужно отметить его уникальную возможность работы с большими нагрузками, а также на высоких частотах. Кроме того, к преимуществам относятся:

  • дешевизна;
  • большая распространённость;
  • простота конструкции;
  • надёжность.

Из недостатков этого резистора выделяют повышение температуры прибора в целом, а также увеличение низкочастотного шума.

Технология изготовления и параметры

При изготовлении варистора используют два порошка:

  • оксид цинка;
  • карбид кремния.

Классификация и преимущества - фотография 20 - изображение 20

Основная технология при изготовлении заключается в обжиге всех элементов под высокими температурами в печи и одновременном их спрессовывании. Получившееся изделие покрывают водостойким и электроизоляционным лаком. Эта технология называется керамической и позволяет заниматься изготовлением варистора на заказ.

Резисторы полупроводникового типа характеризуются следующими признаками:

  • напряжение номинальное классификационное;
  • максимально допустимое переменное напряжение;
  • напряжение возможно допустимое постоянное;
  • максимальное напряжение ограничения (при увеличении которого прибор выходит из строя);
  • энергия, максимально поглощаемая.

Практически у всех варисторов время срабатывания равно десяткам наносекунд. Допустимое отклонение имеет обозначение ±5%, ±10%, ±20% и т. д.

Маркировка и обозначения

Технология изготовления и параметры - фото 21 - изображение 21

Для того чтобы понять, какой варистор представлен, и какие у него характеристики, нужно понимать, что обозначают буквы и цифры, нанесённые на корпус каждого элемента. Их правильная расшифровка и расскажет о его точных параметрах.

Тип элемента обозначается первыми буквами. Например, нелинейное сопротивление обозначается — СН. Далее за буквами идёт цифра, которая обозначает, из какого материала сделан варистор. Если стоит цифра 1, то материал, используемый при изготовлении — карбид кремния.

Также цифра, которая находится между двумя дефисами, обозначает вид конструкции. Если стоит цифра 1, то изделие имеет конструкцию стержневого типа, а если стоит цифра 2 — то дискового. Последующие цифры обозначают соответственно номинальное напряжение и допустимое отклонение, которое указывается в процентах.

Если нужно узнать, работоспособен ли прибор, то необходимо выполнить несколько действий. Во-первых, следует осмотреть варистор на наличие повреждений на нём либо иных визуальных дефектов (почернение, потемнение, наличие микротрещин). Если обнаружены вышеперечисленные недостатки, то следует отказаться от использования такого прибора и заменить его на новый, так как свою функцию он выполнять не будет (возможно, будет, но не в полном объёме).

Во-вторых, следует воспользоваться омметром или мультиметром для измерения сопротивления. Если показатели не соответствуют норме, то от такого прибора также следует отказаться.

Варистор является надёжным резистором, изготовленным из полупроводникового материала, который эффективно защищает электроприборы от перегрузок и перепадов напряжения. При резком повышении напряжения сети он берёт всю нагрузку на себя, тем самым не давая перегорать прибору, в который он установлен. Следовательно, это самая простая, недорогая и надёжная защита.

Варистор: принцип работы, характеристики, назначение. Как работает варистор?

Маркировка и обозначения - фотография 22 - изображение 22

Варистором называются полупроводниковые приборы, сопротивление которых резко уменьшается (на несколько порядков) при превышении приложенного к ним напряжения некоторого порогового значения. Данная особенность этих приборов обуславливает их применение в системах защиты электрических цепей от перенапряжения (путём подключения варистора параллельно защищаемой цепи). Вольтамперная характеристика варисторов симметрична, поэтому они ограничивают напряжение независимо от его полярности, в том числе могут работать в цепях переменного напряжения.

Как правило, они бывают металлооксидные или оксидноцинковые. Если посмотреть на вольт-амперные характеристики варистора, то можно отметить, что он имеет нелинейную симметричную форму, то есть может работать не только на постоянном, но и переменном напряжении. Такой элемент присоединяется параллельно нагрузке. Как работает варистор?

Варистор: принцип работы, характеристики, назначение. Как работает варистор? - фотография 23 - изображение 23

При повышении напряжения в сети ток проходит не через оборудование, а именно через варистор. Такое приспособление способно распределять энергию в виде тепла. Его главные особенности — это многократное использование и быстрое время восстановления, то есть его сопротивление имеет первоначальный показатель при снятии напряжения.

Какой имеет варистор принцип работы? Деталь ничем не отличается от обычного резистора, то есть при нормальном функционировании электроники он имеет омическое сопротивление. Итак, рассмотрим, какой имеет варистор принцип работы.

Показатель такого сопротивления довольно высок, и может составить 100000 Ом. При включении напряжения оно может уменьшиться, как только возникнет необходимость в защите уровня. Сопротивление падает от 100000 Ом до 100. Если значение упадет до низкого предела или будет равно нулю, то может возникнуть короткое замыкание. При этом предохранитель, который находится в электрической цепи перед варистором, выходит из строя. После этого электрическая цепь замыкается, и напряжение полностью отключается.

Как говорилось ранее, при отсутствии напряжения варистор может полностью восстановиться и работать в прежнем режиме. Для его функционирования требуется заменить перегоревший предохранитель. Далее электронное устройство будет правильно функционировать. Варистор присоединяется параллельно источнику питания. Рассмотрим, какой имеет варистор принцип работы, на примере обычного персонального компьютера. Так как он имеет два вывода, то присоединение осуществляется параллельно фазы и нуля.

Как выглядит элемент?

Такое приспособление, как варистор, фото которого есть в нашей статье, напоминает обычный резистор, то есть имеет форму прямоугольника. Но все же имеет небольшое отличие.

Как выглядит элемент? - фото 24 - изображение 24

Посреди него проходит диагональ, конец которой изогнут.

Как маркируется варистор?

На сегодняшний день можно встретить разные обозначения этих приборов. Каждый производитель вправе устанавливать ее самостоятельно. Маркировки различаются, потому что технические характеристики варисторов отличаются друг от друга. Примерами могут служить такие показатели, как допустимое напряжение или необходимый уровень тока.

В настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики. Например, предельно допустимое напряжение или необходимый для функционирования уровень тока. Наиболее популярная маркировка – CNR, к которой прикрепляется такое обозначение, как 07D390K. Что же это значит? Итак, само обозначение CNR указывает на вид прибора. В этом случае варистор является металлооксидным.

Как маркируется варистор? - фото 25 - изображение 25

Далее, 07 – это размер устройства в диаметре, то есть равный 7 мм. D – дисковое устройство, и 390 – максимально допустимый показатель напряжения.

Основные параметры варисторов

К таким параметрам относят:

  • норма напряжения;
  • максимально допустимый показатель переменного и постоянного тока;
  • пиковое поглощение энергии;
  • возможные погрешности;
  • время работы элемента.

Диагностика

Чтобы проверить данное электронное устройство, используют специальное оборудование, которое называется тестером. Итак, для проведения испытания понадобится варистор, принцип работы которого заключается в изменении параметров сопротивления, и тестирующее устройство. Перед его началом необходимо включить устройство и переключить в режим сопротивления. Только тогда аппарат будет отвечать всем необходимым техническим требованиям, и величина сопротивления будет огромной.

Перед началом проведения испытаний необходимо проверить техническое состояние прибора. В первую очередь следует посмотреть на его внешний вид. На приборе не должно быть трещин, а также признаков того, что он сгорел. Не стоит относиться к осмотру аппарата халатно, так как любая небольшая поломка может привести к возникновению неприятных обстоятельств.

Варисторы: применение

Такие приборы играют важную роль в жизни человека.

Основные параметры варисторов - изображение 26 - изображение 26

Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании. Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока.

Диагностика - фотография 27 - изображение 27

Такие устройства используются еще в линиях электропередач. Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Положительные стороны варисторов

Данный вид аппаратов имеет множество положительных качеств, если сравнивать его с другими приборами, например, с разрядником. К таким важным преимуществам можно отнести:

  • высокая скорость работы элемента;
  • возможность отслеживания перепадов тока безинерционным методом;
  • возможность использования на уровне напряжения в пределах от 12 до 1800 В;
  • длительный срок эксплуатации;
  • относительно малая стоимость за счет простоты конструкции.

Отрицательные стороны

Вместе с таким большим количеством преимуществ перед другими приборами, есть также и существенные недостатки, среди которых можно выделить такие.

  1. Варисторы имеют огромной размер собственной емкости, что сказывается на работе электрической сети. Такой показатель может находиться в пределах от 80 до 3000 пФ. Он зависит от многих моментов: конструкция и вид варистора, а также максимальное значение уровня напряжения. Стоит отметить, что в некоторых случаях такой существенный недостаток может превратиться в главное достоинство. Но такое возможно довольно редко, например, если использовать варистор в фильтрах. В такой ситуации большая емкость будет служить в качестве ограничителя напряжения в сети.
  2. По сравнению с разрядниками, варисторы не способны рассеивать мощность при максимальных показателях напряжения.

Варисторы: применение - фото 28 - изображение 28

Чтобы увеличить показатель рассеянности необходимо увеличивать размер элементов, чем и занимаются многие производители.

Рекомендации к установке

Если появилась необходимость во включении варистора в электрическую сеть, необходимо помнить о таких важных моментах:

  • Всегда следует иметь в виду, что данный прибор не вечен, и наступят такие условия, которые приведут к его взрыву. Чтобы этого не произошло, необходимо использовать специальные защитные экраны, в которые можно поместить весь варистор.
  • Следует отметить, что кремневые технические приспособления существенно уступают по своим характеристикам оксидным аналогам. Поэтому лучше всего использовать именно этот вид варистора.

Заключение

Варистор играет важную роль в функционировании многих электрических цепей. Как говорилось ранее, такой вид полупроводниковых резисторов служит для уменьшения показателей сопротивления при увеличении напряжения или тока.

Положительные стороны варисторов - изображение 29 - изображение 29

Благодаря такой возможности их устанавливают во многие электрические приборы. При скачках напряжения варистор, назначение которого направлено на изменение сопротивления, не дает ломаться приборам. Также он предотвращает перегоранию проводки. Таким образом, данные элементы обеспечивают надежную защиту при скачках электрического напряжения в сети.

Источники:

Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Оставить комментарий:

Отправить

Полезные сервисы:

Опрос: Насколько Вам помогла информация на нашем сайте? (Кол-во голосов: 586)
Сразу все понял
Не до конца понял
Пришлось перечитывать несколько раз
Вообще не понял
Как я сюда попал?
Чтобы проголосовать, кликните на нужный вариант ответа. Результаты